Drug metabolism and disposition: the biological fate of chemicals, 12(5), 565-576 (1984-09-01)
Incubations of 3'-hydroxyacetanilide (3HAA) with hepatic microsomal preparations from phenobarbital-pretreated mice led to the formation of three products of aromatic hydroxylation, viz. 2',5'-, 3',4'-, and 2',3'-dihydroxyacetanilide, which were identified by GC/MS techniques and quantified by GLC analysis. NADPH-dependent covalent binding
Toxicological sciences : an official journal of the Society of Toxicology, 121(2), 312-319 (2011-03-16)
Immune-mediated drug hypersensitivity reactions are important causes of black box warnings and drug withdrawals. Despite the high demand for preclinical screening tools, no validated in vitro or in vivo models are available. In the current study, we used a previously
The hepatotoxicity of the analgesic acetaminophen has been previously attributed to metabolic activation by cytochrome P450 to the reactive intermediate N-acetyl-p-benzoquinone imine. At therapeutic doses this species is detoxified by reaction with glutathione; however, following a hepatotoxic dose, liver glutathione
Drug metabolism and disposition: the biological fate of chemicals, 18(5), 765-770 (1990-09-01)
The metabolism and disposition of acetaminophen (APAP) and a non-hepatotoxic regioisomer, 3'-hydroxyacetanilide (AMAP), were investigated in the mouse using 14C-labeled analogues. Covalent binding of metabolites of both compounds was observed on the order of 1 nmol/mg tissue protein. AMAP binding
Chemical research in toxicology, 2(1), 41-45 (1989-01-01)
3'-Hydroxyacetanilide (AMAP) is a nonhepatotoxic regioisomer of acetaminophen (APAP) that nonetheless does form reactive metabolites which bind to hepatic proteins. Because differences in the nature of reactive metabolites formed from AMAP and APAP may explain differences in their propensity to
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.