Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

900416

Sigma-Aldrich

Nitrogen-doped graphene

Synonym(s):

N-Doped graphene, NDG, NG

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352200

form

powder

composition

Carbon, >80 wt. %
Nitrogen, >4 wt. %

color

black

Looking for similar products? Visit Product Comparison Guide

General description

This highly exfoliated nitrogen-doped graphene exhibits high electrochemical activity towards oxygen reduction in alkali medium providing an affordable industrial alternative to currently used noble metal-based catalysts (i.e. Pt, Pd). This nitrogen-doped graphene shows high onset potential (ca. 940 mV vs. RHE) carrying out the electrochemical oxygen reduction reaction (ORR) towards a 4 electron pathway avoiding the production of H2O2. Furthermore, this material is reported to be more stable (to MeOH) and durable (CO tolerance) than Pt-based catalysts.This highly exfoliated nitrogen-doped graphene exhibits high electrochemical activity towards oxygen reduction in alkali medium providing an affordable industrial alternative to currently used noble metal-based catalysts (i.e. Pt, Pd). This nitrogen-doped graphene shows high onset potential (ca. 940 mV vs. RHE) carrying out the electrochemical oxygen reduction reaction (ORR) towards a 4 electron pathway avoiding the production of H2O2. Furthermore, this material is reported to be more stable (to MeOH) and durable (CO tolerance) than Pt-based catalysts.

Physical properties

Electrocatalytic oxygen reduction reaction (ORR) onset potential: >-0.1 V (0.1 M KOH vs Ag/AgCl).

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Facile synthesis of mesoporous nitrogen-dopedgraphene: An efficient methanol?tolerantcathodiccatalystfor oxygen reductionreaction.
Conga H, et al.
Nano Energy, 3, 55-63 (2014)
Frédéric Joucken et al.
Scientific reports, 5, 14564-14564 (2015-09-29)
Understanding the modification of the graphene's electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy
Tao Hu et al.
Physical chemistry chemical physics : PCCP, 16(3), 1060-1066 (2013-11-30)
Chemical doping of nitrogen into graphene can significantly enhance the reversible capacity and cyclic stability of the graphene-based lithium ion battery (LIB) anodes, and first principles calculations based on density functional theory suggested that pyridinic-N shows stronger binding with Li

Articles

Advanced technologies for energy conversion and storage aim to improve performance and reduce environmental impact.

Advances in scalable synthesis and processing of two-dimensional materials

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service