Skip to Content
MilliporeSigma
All Photos(1)

Documents

739944

Sigma-Aldrich

Resomer® RG 504, Poly(D,L-lactide-co-glycolide)

lactide:glycolide 50:50, ester terminated, Mw 38,000-54,000

Synonym(s):

PLGA

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[C3H4O2]x[C2H2O2]y
CAS Number:
UNSPSC Code:
12162002
NACRES:
NA.23

form

amorphous

feed ratio

lactide:glycolide 50:50

mol wt

Mw 38,000-54,000

degradation timeframe

<3 months

viscosity

0.45-0.60 dL/g, 0.1 % (w/v) in chloroform(25 °C, Ubbelohde) (size 0c glass capillary viscometer)

transition temp

Tg 46-50 °C

storage temp.

2-8°C

InChI

1S/C6H8O4.C4H4O4/c1-3-5(7)10-4(2)6(8)9-3;5-3-1-7-4(6)2-8-3/h3-4H,1-2H3;1-2H2

InChI key

LCSKNASZPVZHEG-UHFFFAOYSA-N

Related Categories

Application

Resomer® RG 504, Poly(ᴅ,ʟ-lactide-co-glycolide) can be used to prepare polymeric nanoparticles that are effective carriers for anti-cancer natural substances.

Poly(D, L-lactide-co-glycolide)microspheres can be used to fabricate a hemostatic delivery device forthrombin.

Features and Benefits

Controlled release of bioactive agents, sutures and bioabsorbable implantable devices.

Legal Information

Product of Evonik
RESOMER is a registered trademark of Evonik Rohm GmbH

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Ananthakrishnan Soundaram Jeevarathinam et al.
Angewandte Chemie (International ed. in English) (2019-12-17)
We report a new approach to monitor drug release from nanocarriers via a paclitaxel-methylene blue conjugate (PTX-MB) with redox activity. This construct is in a photoacoustically silent reduced state inside poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PTX-MB@PLGA NPs). During release, PTX-MB is
Rongcai Liang et al.
International journal of pharmaceutics, 454(1), 344-353 (2013-07-23)
Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative
Teresa Musumeci et al.
International journal of pharmaceutics, 440(2), 135-140 (2012-10-20)
Melatonin, a neurohormone secreted by the pineal gland, is able to modulate intraocular pressure (IOP). The aim of this study was to generate nanoparticle (NPs) sustained release formulations that allow to extend the pre-corneal residence time of melatonin, thus prolonging
Igor Jeroukhimov et al.
Journal of the American College of Surgeons, 218(1), 102-107 (2013-11-12)
Chronic pain after inguinal hernia repair occurs in 16% to 62% of patients. The underlying mechanism probably involves sensory nerve damage and abnormal healing that might be influenced by the materials chosen for the procedure. We hypothesize that nonabsorbable sutures
Patrick Vavken et al.
Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association, 29(1), 122-132 (2012-12-04)
The objective of this study was to assess the effect of absorbable or nonabsorbable sutures in bioenhanced anterior cruciate ligament (ACL) repair in a skeletally immature pig model on suture tunnel and growth plate healing and biomechanical outcomes. Sixteen female

Articles

Interest in utilizing biodegradable polymers for biomedical applications has grown since the 1960s.

Synthetic aliphatic polyesters dominate resorbable biomaterials in clinical use.

AliAliphatic polyesters, including polylactide and polyglycolide, are biodegradable polymers widely used in medical applications.

Immunosuppressive tumor-associated myeloid cells (TAMC) are responsible for glioblastoma (GBM) resistance to immunotherapies and existing standard of care treatments. This mini-review highlights recent progress in implementing nanotechnology in advancing TAMC-targeted therapies for GBM.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service