Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

295744

Sigma-Aldrich

Silver

wool, diam. 0.05 mm, ≥99.9% trace metals basis

Sign Into View Organizational & Contract Pricing

Select a Size

5 G
$254.10
25 G
$716.00

$254.10

List Price$363.00Save 30%
Web-Only Promotion

Available to ship onApril 22, 2025Details


Request a Bulk Order

Select a Size

Change View
5 G
$254.10
25 G
$716.00

About This Item

Linear Formula:
Ag
CAS Number:
Molecular Weight:
107.87
EC Number:
MDL number:
UNSPSC Code:
12141740
PubChem Substance ID:
NACRES:
NA.23

$254.10

List Price$363.00Save 30%
Web-Only Promotion

Available to ship onApril 22, 2025Details


Request a Bulk Order

Quality Level

assay

≥99.9% trace metals basis

form

wool

resistivity

1.59 μΩ-cm, 20°C

diam.

0.05 mm

bp

2212 °C (lit.)

mp

960 °C (lit.)

density

10.49 g/cm3 (lit.)

SMILES string

[Ag]

InChI

1S/Ag

InChI key

BQCADISMDOOEFD-UHFFFAOYSA-N

General description

Silveris a versatile element with a wide range of applications, particularly in thefield of catalysis. It is increasingly utilized in the form of silvernanoparticles (AgNPs) due to their high surface area, making them effective inorganic transformations, photocatalysis, and electrocatalysis. In organicsynthesis, silver catalysts play a crucial role in facilitating variousreactions, showcasing good functional group compatibility and the ability tocatalyze a wide range of transformations.

Application

  • Synthesis of silver nanoparticles with different shapes: Details methods to control the shape of silver nanoparticles, important for material science applications where particle geometry affects properties (B Khodashenas, HR Ghorbani, 2019).
  • Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches: Offers a comprehensive review of silver nanoparticles, providing valuable insights for academia and research-oriented applications (XF Zhang et al., 2016).

pictograms

Environment

signalword

Warning

hcodes

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1

Storage Class

13 - Non Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

T Prameela Devi et al.
Indian journal of experimental biology, 51(7), 543-547 (2013-08-01)
A total of 75 isolates belonging to five different species of Trichoderma viz., T. asperellum, T. harzianum, T. longibrachiatum, T. pseudokoningii and T. virens were screened for the production of silver nanoparticles. Although all the isolates produced nanoparticles, T. virens
Ii-Ho Kim et al.
Journal of nanoscience and nanotechnology, 13(5), 3660-3664 (2013-07-19)
Ag-dispersed Bi0.5Sb1.5Te3 was prepared successfully by silver acetate (AgOAc) decomposition and hot pressing. The Ag nanoparticles were well-dispersed in the Bi0.5Sb1.5Te3 matrix, and acted as phonon scattering centers effectively. The electrical conductivity increased systematically with increasing amount of Ag nanoparticle
Rui Wang et al.
Journal of nanoscience and nanotechnology, 13(6), 3851-3854 (2013-07-19)
The present studies reveal that silver nanoparticles (AgNPs) can induce apoptosis and enhance radio-sensitivity on cancer cells. In this paper, we mainly investigated the effect of AgNPs on rat glioma C6 cells upon the combination treatment of hyperthermia treatment (HTT).
Sa Ram Lee et al.
Journal of biomedical nanotechnology, 9(7), 1241-1244 (2013-08-06)
We demonstrate simultaneous detection of surface-enhanced Raman scattering (SERS) and fluorescence signals from a silver microbead. For the dual signal generation, silver microbeads with a diameter of 15 microm were functionalized with benzenethiol (BT) as a Raman tag and a
Abhijeet Mishra et al.
Journal of nanoscience and nanotechnology, 13(7), 5028-5033 (2013-08-02)
The primary challenge in developing nanoparticle based enzymatic devices is to be able to chemically immobilize an enzyme, which will retain its activity or improve its function while being attached to the nanoparticle. This would be of even greater significance

Questions

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service