跳轉至內容
Merck
首頁多肽合成脯氨酸衍生物及類似物

脯氨酸衍生物及類似物

簡介

脯氨酸是一種非極性的蛋白質氨基酸,當加入縮氨酸時會形成叔酰胺。它的酰胺基上沒有氫基,因此不能作為氫鍵供體。脯氨酸是蛋白質和縮氨酸中螺旋結構和薄片結構的典型破壞者。1

在產生蛋白質的氨基酸中,脯氨酸扮演著特殊的角色。在蛋白質結構中,平面肽鍵主要發生在 反式 構象中。2 脯氨酸殘基限制了肽鏈的構象空間。然而,由於 順式 和反式Xaa-Pro鍵異構體間的自由焓差很小,只有2.0 kJ-mol-1 (相對於10.0 kJ-mol-1 for other Xaa-non-Pro peptide bonds),在 RT 時有相對較高的 30% cis conformation 的本質機率,並且 cis 和 trans 異構體都存在於溶液中。3,4

Pro殘基N端側肽鍵的 順式/反式異構化在蛋白質的折疊過程中扮演了關鍵的角色,因為 順式/反式異構化的旋轉障礙是由於 順式/反式異構化的旋轉障礙所造成的。nbsp;順/反異構化的旋轉障礙相當高(85,0 ± 10,0 kJ-mol-1)。因此,這種相互轉換被描述為蛋白質折疊的限制步驟之一 體外 和 體內5 在自然界中有一類酵素,即肽基-脯氨酰-順/反式-異構酶(PPIases)。6-8

使用脯氨酸類似物進行的比較研究顯示,肽基-脯氨酰鍵順式/反式異構化催化的關鍵步驟是降低平面共轭 C-N 酰胺鍵的雙鍵特性。任何能削弱酰胺鍵的雙鍵特性的因素,例如使平面肽鍵不穩定或使脯氨酰氮的雜化從 sp2  移動到 sp3,都會加速異構化。9,10

為了瞭解肽的亞胺鍵幾何形狀與生物活性之間的關係,11,12 已開發出提供 Xaa-Pro 亞胺構象限制的合成脯氨酸類似物。這些脯氨酸類似物基於烷基和芳香基團的環取代、環中加入雜原子或脯氨酸環的擴展或收縮(表 1)。這些類似物有希望用於構象研究,以及調節天然存在的  以及全新設計的線性和環狀多肽的生物、藥物或物理化學特性。

表 1.

IUPAC 命名法

α-methyl-L-proline

(2R)-2-methyl-pyrrolidine-2-carboxylic acid

α-benzyl-L-proline

<

(2R)-2-benzyl-pyrrolidine-2-carboxylic acid

(2R)-2-benzyl-pyrrolidine-2-carboxylic acid

trans-4-hydroxy-L-proline

<

(2S,4R)-4- 羥基吡咯烷-2-羧酸

cis-4-hydroxy-L-proline

<

(2S,4S)-4- 羥基吡咯烷-2-羧酸

trans-3-hydroxy-L-proline

<

(2S,3R)-3- 羥基吡咯烷-2-羧酸

cis-3-hydroxy-L-proline

<

(2S,3S)-3- 羥基吡咯烷-2-羧酸

trans-4-amino-L-proline

<

(2S,4R)-4- 氨基吡咯烷-2-羧酸

3,4-dehydro-DL-proline

(±)-3-pyrrolin-2-carboxylic acid

L-2-Aziridinecarboxylic-acid

L-2-Aziridinecarboxylic acid

(2S)-aziridine-2-carboxylic acid

L-2-Azetidinecarboxylic-acid

(2S)-azetidine-2-carboxylic acid

L-pipecolic acid

(2S)-piperidine-2-carboxylic acid

4-oxa-L-proline

(4S)-thiazolidine-4-carboxylic acid

3-thia-DL-proline

thiazolidine-2-carboxylic acid

4-thia-L-proline

(4R)-thiazolidine-4-carboxylic acid [TB1]

限制 Xaa-Pro Imide 形態的脯氨酸類似物或同源物結構

自然界中存在數種脯氨酸類似物和同系物。13 脯氨酸和羥脯氨酸的各種3-和4-烷基化衍生物以及具有環限制的類似物,如氮丙啶-2-羧酸和氮杂环丁烷-2-羧酸,以及環擴展,即哌啶醇酸。例如哌啶醇酸,這些都可以在天然產品中找到。14,15 衍生物如L-氮杂环丁烷-2-羧酸、 顺式-4-羟基-L-脯氨酸和3,4-脱氢-DL-脯氨酸可防止原胶原折叠成稳定的三螺旋构象,从而减少纤维化过程中胶原的过度沉积和肿瘤的生长。16

噻唑烷-4-羧酸硫代脯氨酸也被納入膠原蛋白模型化合物17,18 和其他生物活性分子,如凝血酶抑制劑、19 ;20,21 二肽基肽酶IV底物,22 血管張力素II,23 HIV 抑制劑、24 ACE 抑制劑、25 和催產素。26

α 甲基脯氨酸是一種生物活性分子,可恢復骨膠原 I 型合成的正常水平。27 它可以被看作是構象受限的氨基異丁酸類似物。 α甲基脯氨酸殘基已被插入嗎啡肽中,以進行 Xaa-Pro cis-/trans-isomers 生物活性的構象研究。28 A α-甲基脯氨酸含有潛在的雙 α4β1 整合素拮抗劑。29

α苄基脯氨酸結合了脯氨酸衍生物的構象限制和苯丙氨酸的電子特性。含有 α-苄基-脯氨酸亞基結構的螺旋內酰胺已被合成為潛在的 beta-turn 模仿劑。

材料
抱歉,發生意外錯誤。

Network error: Failed to fetch

參考資料

1.
Brandl CJ, Deber CM. 1986. Hypothesis about the function of membrane-buried proline residues in transport proteins.. Proceedings of the National Academy of Sciences. 83(4):917-921. https://doi.org/10.1073/pnas.83.4.917
2.
Ramachandran G, Sasisekharan V. 1968. Conformation of Polypeptides and Proteins.283-437. https://doi.org/10.1016/s0065-3233(08)60402-7
3.
Steward DE, Sarkar A, Wampler JEJ. 1990. Mol. Biol.. 254.353..
4.
Weiss MS, Jabs A, Hilgenfeld R. 1998. Peptide bonds revisited. Nat Struct Mol Biol. 5(8):676-676. https://doi.org/10.1038/1368
5.
Schmid FX. 1993. Prolyl Isomerase: Enzymatic Catalysis of Slow Protein-Folding Reactions. Annu. Rev. Biophys. Biomol. Struct.. 22(1):123-143. https://doi.org/10.1146/annurev.bb.22.060193.001011
6.
Schmid FX, Mayr LM, Mucke M, Schonbrunner E. 1993. Prolyl Isomerases: Role in Protein Folding.25-66. https://doi.org/10.1016/s0065-3233(08)60563-x
7.
Fischer G. 1984. Biomed. Biochem. Acta.. 43.4401. .
8.
Lang K, Schmid FX, Fischer G. 1987. Catalysis of protein folding by prolyl isomerase. Nature. 329(6136):268-270. https://doi.org/10.1038/329268a0
9.
Kern D, Schutkowski M, Drakenberg T. 1997. Rotational Barriers ofcis/transIsomerization of Proline Analogues and Their Catalysis by Cyclophilin§. J. Am. Chem. Soc.. 119(36):8403-8408. https://doi.org/10.1021/ja970606w
10.
Bader RFW, Cheeseman JR, Laidig KE, Wiberg KB, Breneman C. 1990. Origin of rotation and inversion barriers. J. Am. Chem. Soc.. 112(18):6530-6536. https://doi.org/10.1021/ja00174a012
11.
Yamazaki T, Ro S, Goodman M, Chung NN, Schiller PW. 1993. A topochemical approach to explain morphiceptin bioactivity. J. Med. Chem.. 36(6):708-719. https://doi.org/10.1021/jm00058a007
12.
Yu W, Tasayco ML, Tung C, Wang H. NMR analysis of cleaved Escherichia coli thioredoxin (1-73/74-108) and its P76A variant: Cis/trans peptide isomerization. Protein Science. 9(1):20-28. https://doi.org/10.1110/ps.9.1.20
13.
1994. Guidebook to the extracellular matrix and adhesion proteins, edited by thomas kreis and ronald vale, oxford university press, 1993, 176pp, $30. Mol. Reprod. Dev.. 39(2):247-247. https://doi.org/10.1002/mrd.1080390219
14.
Mauger A. 1977. In Chemistry and Biochemistry of Amino Acids, Peptide and Proteins; Weinstein, B., Ed.; Marcel Dekker: New York.. 179
15.
Wagner I, Musso H. 1983. New Naturally Occurring Amino Acids. Angew. Chem. Int. Ed. Engl.. 22(11):816-828. https://doi.org/10.1002/anie.198308161
16.
Metzner L, Kalbitz J, Brandsch M. 2004. Transport of Pharmacologically Active Proline Derivatives by the Human Proton-Coupled Amino Acid Transporter hPAT1. J Pharmacol Exp Ther. 309(1):28-35. https://doi.org/10.1124/jpet.103.059014
17.
Goodman M, Niu GCC, Su K. 1970. Conformational aspects of polypeptide structure. XXXI. Helical poly[(S)-thiazolidine-4-carboxylic acid] and poly[(S)-oxazolidine-4-carboxylic acid]. Theoretical results. J. Am. Chem. Soc.. 92(17):5219-5220. https://doi.org/10.1021/ja00720a038
18.
Goodman M, Chen V, Benedetti E, Pedone C, Corradini P. 1972. Conformational aspects of polypeptide structure. XLI. Crystal structure ofS-thiazolidine-4-carboxylic acid and helical structure of poly[(S)-thiazolidine-4-carboxylic acid]. Biopolymers. 11(9):1779-1787. https://doi.org/10.1002/bip.1972.360110903
19.
Shuman RT, Rothenberger RB, Campbell CS, Smith GF, Gifford-Moore DS, Paschal JW, Gesellchen PD. 1995. Structure-Activity Study of Tripeptide Thrombin Inhibitors Using .alpha.-Alkyl Amino Acids and Other Conformationally Constrained Amino Acid Substitutions. J. Med. Chem.. 38(22):4446-4453. https://doi.org/10.1021/jm00022a009
20.
PATTARONI C, LUCIETTO P, GOODMAN M, YAMAMOTO G, VALE W, MORODER L, GAZERRO L, GÖHRING W, SCHMIED B, WÜNSCH E. Cyclic hexapeptides related to somatostatin Synthesis and biological testing. 36(5):401-417. https://doi.org/10.1111/j.1399-3011.1990.tb01300.x
21.
Wünsch E. 1990. Int. J. Pept. Protein Res.. 36.418..
22.
RAHFELD J, SCHUTKOWSKI M, FAUST J, NEUBERT K, BARTH A, HEINS J. 1991. Extended Investigation of the Substrate Specificity of Dipeptidyl Peptidase IV from Pig Kidney. Biological Chemistry Hoppe-Seyler. 372(1):313-318. https://doi.org/10.1515/bchm3.1991.372.1.313
23.
Samanen J, Cash T, Narindray D, Brandeis E, Adams W, Weideman H, Yellin T, Regoli D. 1991. An investigation of angiotensin II agonist and antagonist analogs with 5,5-dimethylthiazolidine-4-carboxylic acid and other constrained amino acids. J. Med. Chem.. 34(10):3036-3043. https://doi.org/10.1021/jm00114a012
25.
Karanewsky DS, Badia MC, Cushman DW, DeForrest JM, Dejneka T, Lee VG, Loots MJ, Petrillo EW. 1990. (Phosphinyloxy)acyl amino acid inhibitors of angiotensin converting enzyme. 2. Terminal amino acid analogs of (S)-1-[6-amino-2-[[hydroxy(4-phenylbutyl)phosphinyl]oxy]-1-oxohexyl]-L-proline. J. Med. Chem.. 33(5):1459-1469. https://doi.org/10.1021/jm00167a028
26.
Einbond A, Sudol M. 1996. Towards prediction of cognate complexes between the WW domain and proline-rich ligands. 384(1):1-8. https://doi.org/10.1016/0014-5793(96)00263-3
27.
Lubec G, Labudova O, Seebach D, Beck A, Hoeger H, Hermon M, Weninger M. 1995. Alpha-methyl-proline restores normal levels of bone collagen type i synthesis in ovariectomized rats. Life Sciences. 57(24):2245-2252. https://doi.org/10.1016/0024-3205(95)02217-7
28.
Nelson RD. 1986. NIDA Research Monograph.101.
29.
Chang LL, Truong Q, Mumford RA, Egger LA, Kidambi U, Lyons K, McCauley E, Van Riper G, Vincent S, Schmidt JA, et al. 2002. The discovery of small molecule carbamates as potent dual ?4?1/?4?7 integrin antagonists. Bioorganic & Medicinal Chemistry Letters. 12(2):159-163. https://doi.org/10.1016/s0960-894x(01)00710-7
30.
Alonso E, López-Ortiz F, del Pozo C, Peralta E, Macías A, González J. 2001. Spiro?-Lactams as?-Turn Mimetics. Design, Synthesis, and NMR Conformational Analysis. J. Org. Chem.. 66(19):6333-6338. https://doi.org/10.1021/jo015714m
登入以繼續

若要繼續閱讀,請登入或建立帳戶。

還沒有帳戶?

為便利客戶閱讀,此頁面中文以機器翻譯完成。雖然我們已盡力確保機器翻譯的準確性,但機器翻譯並非完美。如果您對機器翻譯的內容不滿意,請參考英文版本。