跳轉至內容
Merck
首頁有機反應工具箱單電子氧化轉換

單電子氧化誘導的化學轉換:碳-碳鍵的形成和選擇性噁唑烷重排

單電子氧化誘導的化學轉換:碳-碳鍵的形成和選擇性噁唑烷重排

Shafrizal Rasyid Atriardi, and Sang Kook Woo*

Department of Chemistry University of Ulsan, 93 Daehak-Ro Nam-gu, Ulsan 44610, Republic of Korea

摘要

可見光光氧催化是綠色可持續有機合成領域中一個重要且不斷成長的研究領域。單電子轉移 (Single-electron Transfer, SET) 是光過氧化催化的主要機理之一,我們的研究小組已對其進行了廣泛的研究,以開發更綠色的碳-碳鍵形成反應和噁唑烷重排反應。在這篇回顧中,我們將重點介紹我們在開發和應用中性矽自由基前體以生成烷基自由基,以及選擇性地將噁齊啶重組成硝基或酰胺方面的成果。

引言

近十年來,可見光光氧催化因其廉價、豐富、清潔的光源和溫和的反應條件,在可持續有機合成領域受到了廣泛的關注,並開發出了許多由可見光光氧催化促進的有機反應。1單電子轉移 (SET) 會產生自由基物質,是光氧化催化反應的主要機制之一。根據催化循環中催化劑的氧化還原狀態,SET 機制可分為氧化淬火循環和還原淬火循環 (圖 1(a)部分)。1b,f,2 SET 機制的自發性很容易從光誘導電子轉移的吉布斯能量 (Δ)預測出來。GPET = -F[Ered(A/A--)) - Eox(D-+/D)] - w - ΔE0,0),其中催化劑和底物的氧化還原電位可從文獻中獲得,或通過週期伏安法測定。我們的研究重點是 SET 在光氧化催化中的應用,利用過渡金屬基和有機光催化劑如 Ru(bpz)3(PF6)2、Ir(dF(CF3)ppy)2(dtbpy)PF6、Fukuzumi 的吖啶鎓鹽 (Acr+-Mes)、2,4,5,6-四(9H)-咔唑-9-基)-異酞腈 (4CzIPN) 和 2,4,5,6-四(3,6-二氯-9H-咔唑-9-基)異酞腈 (Cl-4CzIPN),它們都是良好的氧化劑(圖 1,(b)部分)。由於有機光催化劑成本低且容易製備,因此我們特別青睞有機光催化劑。在這篇評論中,我們將介紹我們對中性硅基自由基前體的研究結果,這些前體可通過 SET 生成烷基自由基,並選擇性地將噁唑烷重排為硝基或酰胺。

上方是代表光氧化催化的單電子轉移 (SET) 機制的循環,下方是常用氧化劑光催化劑的化學結構(從左至右),Ru(bpz)3(PF6)2、Ir(dF(CF3)ppy)2(dtbpy)PF6、Fukuzumi 的吖啶鎓鹽 (Acr+-Mes)、4CzIPN 和 Cl-4CzIPN

圖 1. (a) 單電子轉移 (SET) 機理。(b) 流行的氧化劑光觸媒。(Ref. 1)

Conclusion

在這篇回顧中,我們總結了我們對於開發更環保、更永續的反應所做的貢獻,這些反應是透過光氧化催化中的 SET 機制來形成碳-碳鍵和重排噁唑烷。我們開發了烷氧基甲基、羥甲基和烯丙基的中性硅基前體,並將它們用於 Giese 反應、RPC 反應和亞胺加成反應中,以形成新的碳-碳鍵。這些反應提供了獲得廣泛有價值支架的途徑,例如醚、醇、2,3-二氫呋喃、α-氰基-γ-丁內酯、γ-丁內酯、烯丙基化合物、gem-二氟烯丙基、β-氨基醚和β-氨基醇。我們也證實了在光催化條件下,噁唑烷可選擇性地重排為硝基和酰胺。在乙腈、乙酸乙酯和丙酮等溶劑中,可選擇性地觀察到噁嗪基化合物重排為亞硝基化合物,而酰胺則通過弱基(如 CF3CO2- 和 DMF) 促進的重排形成。我們正在進行的研究工作旨在進一步改良矽基烷基自由基前體,以生產和利用各種烷基自由基,並進一步探索噁唑烷的化學轉換。我們衷心希望我們的研究能為擴展生態友好的有機合成做出貢獻。

鳴謝

本研究獲得韓國政府(MSIT)資助的韓國國家研究基金會(NRF)的資助(NRF-2022R1A2C1005108 和 2021R1A4A1027480)。

商標。Amberlite® (TDDP Specialty Electronic Materials US 8, LLC).

商標。

相關產品
Loading

參考資料

1.
(a) Narayanam JMR, Stephenson CRJ. 2011. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40(1):102-113. https://doi.org/10.1039/B913880N (b) Tucker JW, Stephenson CRJ. 2012. Shining Light on Photoredox Catalysis: Theory and Synthetic Applications. J. Org. Chem. 77(4):1617-1622. https://doi.org/10.1021/jo202538x (c) Xuan J, Xiao WJ. 2012. Visible-Light Photoredox Catalysis. Angew. Chem., Int. Ed. 51(28):6828-6838. https://doi.org/10.1002/anie.201200223 (d) Prier CK, Rankic DA. MacMillan DWC. 2013. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113(7):5322-5363. https://doi.org/10.1021/cr300503r (e) Fukuzumi S, Ohkubo K. 2014. Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem. 12(32):6059-6071https://doi.org/10.1039/c4ob00843j (f) Romero NA, Nicewicz DA. 2016. Organic Photoredox Catalysis. Chem. Rev. 116(17):10075-10166. https://doi.org/10.1021/acs.chemrev.6b00057 (g) Shaw MH, Twilton J, MacMillan DWC. 2016. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 81(16):6898-6926. https://doi.org/10.1021/acs.joc.6b01449 (h) Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. 2019. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem. Commun. 55(38):5408-5419https://doi.org/10.1039/c9cc01047e (i) Crespi S, Fagnoni M. 2020. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem. Rev. 120(17):9790-9833. https://doi.org/10.1021/acs.chemrev.0c00278 (j) Gontala A, Jang GS, Woo SK. 2021. Visible‐Light Photoredox‐Catalyzed α‐Allylation of α‐Bromocarbonyl Compounds Using Allyltrimethylsilane. Bull. Korean Chem. Soc. 42(3):506-509. https://doi.org/10.1002/bkcs.12219
2.
Rehm D, Weller A. 1970. Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Isr. J. Chem. 8(2):259-271. https://doi.org/10.1002/ijch.197000029
3.
Yasu Y, Koike T, Akita M. 2012. Visible Light-Induced Selective Generation of Radicals from Organoborates by Photoredox Catalysis. Adv. Synth. Catal. 354(18):3414-3420. https://doi.org/10.1002/adsc.201200588
4.
Kitcatt DM, Nicolle S, Lee A. 2022. Direct decarboxylative Giese reactions. Chem. Soc. Rev. 51(4):1415-1453. https://doi.org/10.1039/d1cs01168e
5.
Corcé V, Chamoreau L, Derat E, Goddard J, Ollivier C, Fensterbank L. 2015. Silicates as Latent Alkyl Radical Precursors: Visible‐Light Photocatalytic Oxidation of Hypervalent Bis‐Catecholato Silicon Compounds. Angew Chem Int Ed. 54(39):11414-11418. https://doi.org/10.1002/anie.201504963
6.
Gutiérrez-Bonet Á, Tellis JC, Matsui JK, Vara BA, Molander GA. 2016. 1,4-Dihydropyridines as Alkyl Radical Precursors: Introducing the Aldehyde Feedstock to Nickel/Photoredox Dual Catalysis. ACS Catal. 6(12):8004-8008. https://doi.org/10.1021/acscatal.6b02786
7.
He F, Ye S, Wu J. 2019. Recent Advances in Pyridinium Salts as Radical Reservoirs in Organic Synthesis. ACS Catal. 9(10):8943-8960. https://doi.org/10.1021/acscatal.9b03084
8.
Murarka S. 2018. N‐(Acyloxy)phthalimides as Redox‐Active Esters in Cross‐Coupling Reactions. Adv Synth Catal. 360(9):1735-1753. https://doi.org/10.1002/adsc.201701615
9.
Yoshida J, Maekawa T, Murata T, Matsunaga S, Isoe S. 1990. Electrochemical oxidation of organosilicon compounds. Part 7. The origin of .beta.-silicon effect in electron-transfer reactions of silicon-substituted heteroatom compounds. Electrochemical and theoretical studies. J. Am. Chem. Soc. 112(5):1962-1970. https://doi.org/10.1021/ja00161a049
10.
Gant Kanegusuku AL, Roizen JL. 2021. Recent Advances in Photoredox‐Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angew Chem Int Ed. 60(39):21116-21149. https://doi.org/10.1002/anie.202016666
11.
De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F. 2007. Electrophilicity and Nucleophilicity Index for Radicals. Org. Lett. 9(14):2721-2724. https://doi.org/10.1021/ol071038k
12.
(a) Nakata T. 2005. Total Synthesis of Marine Polycyclic Ethers. Chem. Rev. 105(12):4314-4347. https://doi.org/10.1021/cr040627q (b) Doherty EM, Fotsch C, Bannon AW, Bo Y, Chen N,  Dominguez C, Falsey J, Gavva NR, Katon J, Nixey T, et al. 2007. Novel Vanilloid Receptor-1 Antagonists:  2. Structure−Activity Relationships of 4-Oxopyrimidines Leading to the Selection of a Clinical Candidate. J. Med. Chem. 50(15):3515–3527. https://doi.org/10.1021/jm070190p
13.
(a) Lund T, Wayner DDM, Jonsson M, Larsen AG,  Daasbjerg K. 2001. Oxidation Potentials of α-Hydroxyalkyl Radicals in Acetonitrile Obtained by Photomodulated Voltammetry. J. Am. Chem. Soc. 123(50):12590-12595. https://doi.org/10.1021/ja011217b (b) Jin J, MacMillan DWC. 2015. Direct α-Arylation of Ethers through the Combination of Photoredox-Mediated C-H Functionalization and the Minisci Reaction. Angew. Chem., Int. Ed. 127(5):1585-1589. https://doi.org/10.1002/anie.201410432
14.
Khatun N, Kim MJ, Woo SK. 2018. Visible-Light Photoredox-Catalyzed Hydroalkoxymethylation of Activated Alkenes Using α-Silyl Ethers as Alkoxymethyl Radical Equivalents. Org. Lett. 20(19):6239-6243. https://doi.org/10.1021/acs.orglett.8b02721
15.
Liu W, Khedkar V, Baskar B, Schürmann M, Kumar K. 2011. Branching Cascades: A Concise Synthetic Strategy Targeting Diverse and Complex Molecular Frameworks. Angew. Chem. Int. Ed. 50(30):6900-6905. https://doi.org/10.1002/anie.201102440
16.
Nam SB, Khatun N, Kang YW, Park BY, Woo SK. 2020. Controllable one-pot synthesis for scaffold diversity via visible-light photoredox-catalyzed Giese reaction and further transformation. Chem. Commun. 56(19):2873-2876. https://doi.org/10.1039/c9cc08781h
17.
(a) Wang Y,  Zheng Z, Liu S, Zhang H, Li E, Guo L, Che Y. 2010. Oxepinochromenones, Furochromenone, and their Putative Precursors from the Endolichenic Fungus Coniochaeta sp. J. Nat. Prod. 73(5):920-924. https://doi.org/10.1021/np100071z (b) Rossi D, Nasti R, Collina S, Mazzeo G, Ghidinelli S,  Longhi G, Memo M, Abbate S. 2017. The role of chirality in a set of key intermediates of pharmaceutical interest, 3-aryl-substituted-γ-butyrolactones, evidenced by chiral HPLC separation and by chiroptical spectroscopies. J. Pharm. Biomed. Anal. 144:41-51. https://doi.org/10.1016/j.jpba.2017.01.007
18.
(a) Yamamoto Y, Nishii S, Maruyama K. 1985. The threo-selective reaction of but-2-enyl organometallic compounds with ethylidenemalonates and related compounds. J. Chem. Soc., Chem. Commun. (7):386-388. https://doi.org/10.1039/C39850000386 (b) Yamamoto Y, Nishii S. 1988. The anti-selective Michael addition of allylic organometals to ethylidenemalonates and related compounds. J. Org. Chem. 53(15):3597-3603. https://doi.org/10.1021/jo00250a034 (c) Araki S, Horie T, Kato M, Hirashita T, Yamamura H, Kawai M. 1999. Regioselective allylation and alkylation of electron-deficient alkenes with organogallium and organoindium reagents. Tetrahedron Lett. 40(12):2331-2334. https://doi.org/10.1016/S0040-4039(99)00179-3 (d) Shibata I, Kano T, Kanazawa N, Fukuoka S, Baba A. 2002. Generation of Organotantalum Reagents and Conjugate Addition to Enones. Angew. Chem., Int. Ed. 114(8):1447-1450. https://doi.org/10.1002/1521-3773(20020415)41:8<1389::AID-ANIE1389>3.0.CO;2-D
19.
(a) Mizuno K, Ikeda M, Otsuji Y. 1988. Dual Regioselectivity in the Photoallylation of Electron-Deficient Alkenes by Allylic Silanes. Chem. Lett. 17(9):1507-1510. https://doi.org/10.1246/cl.1988.1507 (b) Mizuno K, Hayamizu T, Maeda H. 2003. Regio- and stereoselective functionalization of electron-deficient alkenes by organosilicon compounds via photoinduced electron transfer. Pure Appl. Chem. 75(8):1049-1054. https://doi.org/10.1351/pac200375081049
20.
Gontala A, Woo SK. 2020. Visible‐Light Photoredox‐Catalyzed α‐Regioselective Conjugate Addition of Allyl Groups to Activated Alkenes. Adv Synth Catal. 362(15):3223-3228. https://doi.org/10.1002/adsc.202000445
21.
Hoyte RM, Denney DB. 1974. Cis-trans isomerization of allylic radicals. J. Org. Chem. 39(17):2607-2612. https://doi.org/10.1021/jo00931a035
22.
(a) Pitzer L, Schwarz J L, Glorius F. 2019. Reductive radical-polar crossover: traditional electrophiles in modern radical reactions. Chem. Sci. 10(36):8285-8291. https://doi.org/10.1039/c9sc03359a (b) Wiles RJ, Molander GA. 2020. Photoredox-Mediated Net-Neutral Radical/Polar Crossover Reactions. Isr. J. Chem. 60(3-4):281-293. https://doi.org/10.1002/ijch.201900166
23.
(a) Hagmann WK. 2008. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 51(15):4359-4369. https://doi.org/10.1021/jm800219f (b) Purser S, Moore PR, Swallow S, Gouverneur V. 2008. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37(2):320-330. https://doi.org/10.1039/ b610213c (c) Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. 2015. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 58(21):8315-8359. https://doi.org/10.1021/acs.jmedchem.5b00258 (d) Oh K, Chi DY. 2021. Direct Fluorination Strategy for the Synthesis of Fluorine-18 Labeled Oligopeptide—[18F]ApoPep-7. Bull. Korean Chem. Soc. 42(8):1161-1166. https://doi.org/10.1002/bkcs.12350
24.
Atriardi SR, Kim J, Anita Y, Woo SK. 2023. Synthesis of gem‐difluoroalkenes via photoredox‐catalyzed defluoroaryloxymethylation of α‐trifluoromethyl alkenes. Bull. Korean Chem. Soc. 44(1):50-54. https://doi.org/10.1002/bkcs.12633
25.
(a) Ager DJ, Prakash I, Schaad DR. 1996. 1,2-Amino Alcohols and Their Heterocyclic Derivatives as Chiral Auxiliaries in Asymmetric Synthesis. Chem. Rev. 96(2):835-876. https://doi.org/10.1021/cr9500038 (b) Bergmeier SC. 2000. The Synthesis of Vicinal Amino Alcohols. Tetrahedron. 56(17):2561-2576. https://doi.org/10.1016/S0040-4020(00)00149-6
26.
Ahn DK, Kang YW, Woo SK. 2019. Oxidative Deprotection ofp-Methoxybenzyl Ethers via Metal-Free Photoredox Catalysis. J. Org. Chem. 84(6):3612-3623. https://doi.org/10.1021/acs.joc.8b02951
27.
Gontala A, Huh H, Woo SK. 2023. Photoredox-Catalyzed Synthesis of β-Amino Alcohols: Hydroxymethylation of Imines with α-Silyl Ether as Hydroxymethyl Radical Precursor. Org. Lett. 25(1):21-26. https://doi.org/10.1021/acs.orglett.2c03633
28.
(a) Hayyan M, Hashim MA, AlNashef IM. 2016. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 116(5):3029-3085. https://doi.org/10.1021/acs.chemrev.5b00407 (b) Tay NES, Nicewicz DA. 2017. Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis. J. Am. Chem. Soc. 139(45):16100-16104. https://doi.org/10.1021/jacs.7b10076
29.
(a) Williamson KS, Michaelis DJ, Yoon TP. 2014. Advances in the Chemistry of Oxaziridines. Chem. Rev. 114(16):8016-8036. https://doi.org/10.1021/cr400611n (b) Davis FA. 2018. Recent applications of N-sulfonyloxaziridines (Davis oxaziridines) in organic synthesis. Tetrahedron. 74(26):3198-3214. https://doi.org/10.1016/j.tet.2018.02.029 (c) Woo SK. 2022. Oxaziridines and Oxazirines. In Comprehensive Heterocyclic Chemistry IV, Vol. 1, 582–611. https://doi.org/10.1016/B978-0-12-409547-2.14812-7
30.
(a) Ohba Y, Kubo K, Sakurai T. 1998. Sensitized ring-opening reactions of 3-(1-naphthyl)-2-(1-naphthalenemethyl) oxaziridine. J. Photochemistry and Photobiology A:  Chemistry. 113(1):45-51. https://doi.org/10.1016/S1010-6030(97)00313-4 (b) Iwano Y, Kawamura Y, Horie T. 1995. Stereoselective Ring Opening of Geometrically Constrained Oxaziridines by Photosensitized Electron Transfer. Chem. Lett. 24:67-68. https://doi.org/10.1246/cl.1995.67 (c) Iwano Y, Kawamura Y, Miyoshi H, Yoshinari T, Horie T. 1994. Photosensitized Electron-Transfer Reaction of 3-Aryl-2-methyloxaziridine: Direct Deoxygenation from the Isomeric Arylnitrone. Bull. Chem. Soc. Jpn. 67(8):2348-2350. https://doi.org/10.1246/bcsj.67.2348
31.
(a) Gothelf KV, Jørgensen KA. 1998. Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem. Rev. 98(2):863-910. https://doi.org/10.1021/cr970324e (b) Stanley LM, Sibi MP. 2008. Enantioselective Copper-Catalyzed 1,3-Dipolar Cycloadditions. Chem. Rev. 108(8):2887-2902. https://doi.org/10.1021/cr078371m (c) Hashimoto T, Maruoka K. 2015. Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chem. Rev. 115(11), 5366-5412. https://doi.org/10.1021/cr5007182
32.
Jang GS, Lee J, Seo J, Woo SK. 2017. Synthesis of 4-Isoxazolines via Visible-Light Photoredox-Catalyzed [3 + 2] Cycloaddition of Oxaziridines with Alkynes. Org. Lett. 19(23):6448-6451. https://doi.org/10.1021/acs.orglett.7b03369
33.
Oliveros E, Riviere M, Malrieu JP, Teichteil C. 1979. Theoretical exploration of the photochemical rearrangement of oxaziridines. J. Am. Chem. Soc. 101(2):318-322. https://doi.org/10.1021/ja00496a007
34.
Newcomb M, Reeder RA. 1980. Reactions of trans-2-tert-butyl-3-phenyloxaziridine with lithium amide bases. J. Org. Chem. 45(8):1489-1493. https://doi.org/10.1021/jo01296a029
35.
Park J, Park S, Jang GS, Kim RH, Jung J, Woo SK. 2021. Weak base-promoted selective rearrangement of oxaziridines to amides via visible-light photoredox catalysis. Chem. Commun. 57(78):9995-9998. https://doi.org/10.1039/d1cc03855a
登入以繼續

若要繼續閱讀,請登入或建立帳戶。

還沒有帳戶?