跳轉至內容
Merck
  • Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

The Science of the total environment (2015-05-26)
Junjie Shen, Andrea I Schäfer
摘要

This study examined the feasibility of nanofiltration (NF) and reverse osmosis (RO) in treating challenging natural tropical waters containing high fluoride and natural organic matter (NOM). A total of 166 water samples were collected from 120 sources within northern Tanzania over a period of 16 months. Chemical analysis showed that 81% of the samples have fluoride levels exceeding the WHO drinking guideline of 1.5mg/L. The highest fluoride levels were detected in waters characterized by high ionic strength, high inorganic carbon and on some occasions high total organic carbon (TOC) concentrations. Bench-scale experiments with 22 representative waters (selected based on fluoride concentration, salinity, origin and in some instances organic matter) and 6 NF/RO membranes revealed that ionic strength and recovery affected fluoride retention and permeate flux. This is predominantly due to osmotic pressure and hence the variation of diffusion/convection contributes to fluoride transport. Different membranes had distinct fluoride removal capacities, showing different raw water concentration treatability limits regarding the WHO guideline compliance. BW30, BW30-LE and NF90 membranes had a feed concentration limit of 30-40 mg/L at 50% recovery. NOM retention was independent of water matrices but is governed predominantly by size exclusion. NOM was observed to have a positive impact on fluoride removal. Several mechanisms could contribute but further studies are required before a conclusion could be drawn. In summary, NF/RO membranes were proved to remove both fluoride and NOM reliably even from the most challenging Tanzanian waters, increasing the available drinking water sources.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
2 mol/L 氢氧化钠溶液 溶液, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
2 mol/L 氢氧化钠溶液 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
乙酸, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
乙酸, ≥99.5%, FCC, FG
Sigma-Aldrich
氢氧化钠, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
乙酸, natural, ≥99.5%, FG
Sigma-Aldrich
5α-雄甾烷-17β-醇-3-酮, ≥97.5%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氢氧化钠, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
5α-雄甾烷-17β-醇-3-酮, purum, ≥99.0% (TLC)
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钠, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氢氧化钠-16O 溶液, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
3-乙基-2,4-戊二酮,互变异构体的混合物, 98%
Sigma-Aldrich
乙酸-12C2, 99.9 atom % 12C
Sigma-Aldrich
氯化钠, Vetec, reagent grade, 99%
Sigma-Aldrich
氯化钠, tablet