跳轉至內容
Merck
  • Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.

Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.

Enzyme and microbial technology (2015-05-24)
Yuhong Huang, Peter Kamp Busk, Lene Lange
摘要

Specific enzymes from plant-pathogenic microbes demonstrate high effectiveness for natural lignocellulosic biomass degradation and utilization. The secreted lignocellulolytic enzymes of Fusarium species have not been investigated comprehensively, however. In this study we compared cellulose and hemicellulose-degrading enzymes of classical fungal enzyme producers with those of Fusarium species. The results indicated that Fusarium species are robust cellulose and hemicellulose degraders. Wheat bran, carboxymethylcellulose and xylan-based growth media induced a broad spectrum of lignocellulolytic enzymes in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose decomposing enzymes (GH3, GH5, GH6, GH7, GH9, GH45 and AA9), and abundant hemicellulases. We further applied peptide pattern recognition to reveal nine and seven subfamilies of GH10 and GH11 family enzymes, respectively. The uncharacterized XYL10A, XYL10B and XYL11 enzymes of F. commune were classified, respectively, into GH10 subfamily 1, subfamily 3 and GH11 subfamily 1. These xylanases were successfully expressed in the PichiaPink™ system with the following properties: the purified recombinant XYL10A had interesting high specific activity; XYL10B was active at alkaline conditions with both endo-1,4-β-d-xylanase and β-xylosidase activities; and XYL11 was a true xylanase characterized by high substrate specificity. These results indicate that F. commune with genetic modification is a promising source of enzymes for the decomposition of lignocellulosic biomass.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
咪唑, ReagentPlus®, 99%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化镁 溶液, for molecular biology, 1.00 M±0.01 M
Sigma-Aldrich
氯化镁, anhydrous, ≥98%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
咪唑, for molecular biology, ≥99% (titration)
Sigma-Aldrich
磷酸钠, 96%
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
咪唑水溶液, BioUltra, 1 M in H2O
Sigma-Aldrich
咪唑, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
氯化镁, powder, <200 μm
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
氯化镁 溶液, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
氯化镁, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
氮气, ≥99.998%
Sigma-Aldrich
氯化镁 溶液, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
氯化镁, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
咪唑, ≥99% (titration), crystalline
Sigma-Aldrich
咪唑, ACS reagent, ≥99% (titration)
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
咪唑, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化镁, AnhydroBeads, −10 mesh, 99.99% trace metals basis