跳轉至內容
Merck
  • Embryonic development and maternal regulation of murine circadian clock function.

Embryonic development and maternal regulation of murine circadian clock function.

Chronobiology international (2014-11-29)
Dominic Landgraf, Christian Achten, Franziska Dallmann, Henrik Oster
摘要

The importance of circadian clocks in the regulation of adult physiology in mammals is well established. In contrast, the ontogenesis of the circadian system and its role in embryonic development are still poorly understood. Although there is experimental evidence that the clock machinery is present prior to birth, data on gestational clock functionality are inconsistent. Moreover, little is known about the dependence of embryonic rhythms on maternal and environmental time cues and the role of circadian oscillations for embryonic development. The aim of this study was to test if fetal mouse tissues from early embryonic stages are capable of expressing endogenous, self-sustained circadian rhythms and their contribution to embryogenesis. Starting on embryonic day 13, we collected precursor tissues for suprachiasmatic nucleus (SCN), liver and kidney from embryos carrying the circadian reporter gene Per2::Luc and investigated rhythmicity and circadian traits of these tissues ex vivo. We found that even before the respective organs were fully developed, embryonic tissues were capable of expressing circadian rhythms. Period and amplitude of which were determined very early during development and phases of liver and kidney explants are not influenced by tissue preparation, whereas SCN explants phasing is strongly dependent on preparation time. Embryonic circadian rhythms also developed in the absence of maternal and environmental time signals. Morphological and histological comparison of offspring from matings of Clock-Δ19 mutant and wild-type mice revealed that both fetal and maternal clocks have distinct roles in embryogenesis. While genetic disruptions of maternal and embryonic clock function leads to increased fetal fat depots, abnormal ossification and organ development, Clock gene mutant newborns from mothers with a functional clock showed a larger body size compared to wild-type littermates. These data may contribute to the understanding of the ontogenesis of circadian clocks and the risk of disturbed maternal or embryonic circadian rhythms for embryonic development.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
纯乙醇, 190 proof, for molecular biology
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
乙酸, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
甘油, ACS reagent, ≥99.5%
Sigma-Aldrich
甘油, for molecular biology, ≥99.0%
Sigma-Aldrich
氢氧化钾, ACS reagent, ≥85%, pellets
Sigma-Aldrich
纯乙醇, 200 proof, HPLC/spectrophotometric grade
Sigma-Aldrich
乙酸, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
甘油, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
无水碳酸钠, powder, ≥99.5%, ACS reagent
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
氢氧化钾, reagent grade, 90%, flakes
Sigma-Aldrich
无水碳酸钠, ACS reagent, anhydrous, ≥99.5%, powder or granules
Sigma-Aldrich
纯乙醇, 190 proof, for molecular biology
Sigma-Aldrich
乙酸, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
1mol 氢氧化钾浓缩液 溶液, 45 wt. % in H2O
Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
乙酸, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
乙酸, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
乙酸 溶液, suitable for HPLC
Sigma-Aldrich
氢氧化钾, semiconductor grade, pellets, 99.99% trace metals basis (Purity excludes sodium content.)
Supelco
1mol 氢氧化钾浓缩液 溶液, volumetric, 8.0 M KOH (8.0N)
Sigma-Aldrich
无水碳酸钠, ACS reagent (primary standard), anhydrous, 99.95-100.05% dry basis