跳轉至內容
Merck
  • Deglycosylation as a mechanism of inducible antibiotic resistance revealed using a global relational tree for one-component regulators.

Deglycosylation as a mechanism of inducible antibiotic resistance revealed using a global relational tree for one-component regulators.

Chemistry & biology (2013-02-27)
Leslie Cuthbertson, Sang Kyun Ahn, Justin R Nodwell
摘要

The ligands that interact with the vast majority of small-molecule binding transcription factors are unknown, a significant gap in our understanding of sensory perception by cells. TetR-family regulators (TFRs) are found in most prokaryotes and are involved in regulating virtually every aspect of prokaryotic life however only a few TFRs have been characterized. We report the application of phylogenomics to the identification of cognate ligands for TFRs. Using phylogenomics we identify a TFR, KijR, that responds to the antibiotic kijanimicin. We go on to show that KijR represses a gene, kijX, which confers resistance to kijanimicin. Finally we show that KijX inactivates kijanimicin by the hydrolytic removal of sugar residues. This is a demonstration of antibiotic resistance by deglycosylation.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
四环素 盐酸盐, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
四环素, 98.0-102.0% (HPLC)
Sigma-Aldrich
四环素, 98.0-102.0% (HPLC)
Sigma-Aldrich
四环素 盐酸盐, ≥95% (European Pharmacopoeia HPLC assay)
Sigma-Aldrich
四环素 盐酸盐, powder
Supelco
四环素 盐酸盐, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
四环素 盐酸盐, meets USP testing specifications
Supelco
四环素 盐酸盐, VETRANAL®, analytical standard