跳轉至內容
Merck
  • De novo identification of mammalian ciliary motility proteins using cryo-EM.

De novo identification of mammalian ciliary motility proteins using cryo-EM.

Cell (2021-10-30)
Miao Gui, Hannah Farley, Priyanka Anujan, Jacob R Anderson, Dale W Maxwell, Jonathan B Whitchurch, J Josephine Botsch, Tao Qiu, Shimi Meleppattu, Sandeep K Singh, Qi Zhang, James Thompson, Jane S Lucas, Colin D Bingle, Dominic P Norris, Sudipto Roy, Alan Brown
摘要

Dynein-decorated doublet microtubules (DMTs) are critical components of the oscillatory molecular machine of cilia, the axoneme, and have luminal surfaces patterned periodically by microtubule inner proteins (MIPs). Here we present an atomic model of the 48-nm repeat of a mammalian DMT, derived from a cryoelectron microscopy (cryo-EM) map of the complex isolated from bovine respiratory cilia. The structure uncovers principles of doublet microtubule organization and features specific to vertebrate cilia, including previously unknown MIPs, a luminal bundle of tektin filaments, and a pentameric dynein-docking complex. We identify a mechanism for bridging 48- to 24-nm periodicity across the microtubule wall and show that loss of the proteins involved causes defective ciliary motility and laterality abnormalities in zebrafish and mice. Our structure identifies candidate genes for diagnosis of ciliopathies and provides a framework to understand their functions in driving ciliary motility.

材料
產品編號
品牌
產品描述

Roche
cOmplete蛋白酶抑制剂Cocktail, Tablets provided in glass vials
Roche
抗地高辛-AP,Fab片段, from sheep
Sigma-Aldrich
Adenosine 5′-triphosphate 镁盐, ≥95%, bacterial
Roche
DIG RNA标记混合物, sufficient for 20 reactions, solution
Sigma-Aldrich
抗γ-微管蛋白抗体,小鼠单克隆 小鼠抗, clone GTU-88, ascites fluid
Roche
INT/BCIP 储备液, solution, pkg of 3 mL