跳轉至內容
Merck
  • Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair.

Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair.

Journal of neural engineering (2019-10-03)
Christopher S Lacko, Ishita Singh, Monica A Wall, Andrew R Garcia, Stacy L Porvasnik, Carlos Rinaldi, Christine E Schmidt
摘要

Hydrogel scaffolds hold promise for a myriad of tissue engineering applications, but often lack tissue-mimetic architecture. Therefore, in this work, we sought to develop a new technology for the incorporation of aligned tubular architecture within hydrogel scaffolds engineered from the bottom-up. We report a platform fabrication technology-magnetic templating-distinct from other approaches in that it uses dissolvable magnetic alginate microparticles (MAMs) to form aligned columnar structures under an applied magnetic field. Removal of the MAMs yields scaffolds with aligned tubular microarchitecture that can promote cell remodeling for a variety of applications. This approach affords control of microstructure diameter and biological modification for advanced applications. Here, we sought to replicate the microarchitecture of the native nerve basal lamina using magnetic templating of hydrogels composed of glycidyl methacrylate hyaluronic acid and collagen I. Magnetically templated hydrogels were characterized for particle alignment and micro-porosity. Overall MAM removal efficacy was verified by 96.8% removal of iron oxide nanoparticles. Compressive mechanical properties were well-matched to peripheral nerve tissue at 0.93 kPa and 1.29 kPa, respectively. In vitro, templated hydrogels exhibited approximately 36% faster degradation over 12 h, and were found to guide axon extension from dorsal root ganglia. Finally, in a pilot in vivo study utilizing a 10 mm rat sciatic nerve defect model, magnetically templated hydrogels demonstrated promising results with qualitatively increased remodeling and axon regeneration compared to non-templated controls. This simple and scalable technology has the flexibility to control tubular microstructure over long length scales, and thus the potential to meet the need for engineered scaffolds for tissue regeneration, including nerve guidance scaffolds.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
乙酸钠, anhydrous, ReagentPlus®, ≥99.0%
Sigma-Aldrich
透明质酸酶 来源于牛睾丸, Type I-S, lyophilized powder, 400-1000 units/mg solid
Sigma-Aldrich
叠氮化钠, ReagentPlus®, ≥99.5%
Sigma-Aldrich
透明质酸 钠盐 来源于马链球菌, bacterial glycosaminoglycan polysaccharide
Sigma-Aldrich
三乙基胺, ≥99%
Sigma-Aldrich
甲基丙烯酸缩水甘油酯, ≥97.0% (GC)
Sigma-Aldrich
羟胺 盐酸盐, 99.999% trace metals basis
Sigma-Aldrich
抗-髓鞘碱性蛋白(MBP) 兔抗, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
异硫氰酸荧光素-葡聚糖 50000-偶联物, (FITC:Glucose = 1:100)
Supelco
铁ICP标准液, TraceCERT®, 10 g/L Fe in nitric acid (nominal concentration)
Sigma-Aldrich
抗-S-100 兔抗, IgG fraction of antiserum, buffered aqueous solution