跳轉至內容
Merck
全部照片(1)

重要文件

A3435

Sigma-Aldrich

D-Alanine–Agarose

saline suspension

登入查看組織和合約定價


About This Item

MDL號碼:
分類程式碼代碼:
23151817
NACRES:
NA.56

形狀

saline suspension

標籤範圍

2-8 μmol per mL

基質

cross-linked 4% beaded agarose

基質活化

cyanogen bromide

基質結合

amino

基質墊片

1 atom

儲存溫度

2-8°C

應用

D-Alanine Agarose can be used in proteomics and protein chromatography. It has been utilized in experiments with antibiotics of the vancomycin group to determine the role of micellular aggregates in the high binding affinity of teicoplanin to D-alanyl-D-alanine-agarose.

外觀

Suspension in 2.0 M NaCl containing preservative

分析證明 (COA)

輸入產品批次/批號來搜索 分析證明 (COA)。在產品’s標籤上找到批次和批號,寫有 ‘Lot’或‘Batch’.。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

A Corti et al.
Clinical chemistry, 31(10), 1606-1610 (1985-10-01)
A solid-phase enzyme-receptor assay (SPERA) has been developed for glycopeptide antibiotics of the vancomycin class such as teicoplanin, vancomycin, ristocetin, avoparcin, actaplanin, A-47934, A-41030, and A-35512-B. The assay exploits the mechanism of most action of these antibiotics, which is based
A Corti et al.
Journal of applied biochemistry, 7(2), 133-137 (1985-04-01)
Teicoplanin, as well as the other antibiotics of the vancomycin group, was shown to bind specifically to D-alanyl-D-alanine-agarose (D-Ala-D-Ala-AGA) (A. Corti and G. Cassani, Appl. Biochem. Biotechnol. 11, 101-110 (1985)). This finding is extended, showing that the binding is as
Catherine F Silverio et al.
Electrophoresis, 24(5), 808-815 (2003-03-11)
Binding constants between the glycopeptides teicoplanin (Teic) and ristocetin (Rist) and their derivatives to D-Ala-D-Ala terminus peptides were determined by on-column receptor synthesis coupled to partial-filling affinity capillary electrophoresis (PFACE) or affinity capillary electrophoresis (ACE). In these techniques, the column
Makoto Umeda et al.
Biochemical and biophysical research communications, 466(4), 717-722 (2015-09-09)
Arginine, a semi-essential amino acid, is known as one of the most strongest insulin secretagogues in a glucose-dependent manner, but major mechanism is unknown. Arginine induced insulin secretion in mice as well as β cell line, NIT-1, in which more

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務