跳轉至內容
Merck
全部照片(1)

文件

934410

Sigma-Aldrich

Carbamic acid, N-[2-(1-piperazinyl)ethyl]-, 1,1-dimethylethyl ester

≥95%

同義詞:

1,1-Dimethylethyl N-[2-(1-piperazinyl)ethyl]carbamate, 1-(2-((tert-Butoxycarbonyl)amino)ethyl)piperazine, tert-Butyl N-(2-(piperazin-1-yl)ethyl)carbamate, tert-Butyl [2-(piperazin-1-yl)ethyl]carbamate, Carbamic acid, [2-(1-piperazinyl)ethyl]-, 1,1-dimethylethyl ester

登入查看組織和合約定價


About This Item

經驗公式(希爾表示法):
C11H23N3O2
CAS號碼:
分子量::
229.32
MDL號碼:
分類程式碼代碼:
12352108
NACRES:
NA.21

品質等級

化驗

≥95%

形狀

powder

儲存溫度

2-8°C

應用

A functionalized cereblon ligand for development of Thalidomide based PROTACs. Allows rapid conjugation with carboxyl linkers due to presence of amine group via peptide coupling reactions. Amenable for linker attachement via reductive amination, and a basic building block for making protein degrader library.

Technology Spotlight:

Degrader Building Blocks for Targeted Protein Degradation

Protein Degrader Building Blocks

法律資訊

PROTAC® is a registered trademark of Arvinas Operations, Inc., and is used under license.
PROTAC is a registered trademark of Arvinas Operations, Inc., and is used under license

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析證明 (COA)

輸入產品批次/批號來搜索 分析證明 (COA)。在產品’s標籤上找到批次和批號,寫有 ‘Lot’或‘Batch’.。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Jingwei Shao et al.
Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(20), e2102555-e2102555 (2021-08-17)
DNA-binding proteins, including transcription factors (TFs), play essential roles in various cellular processes and pathogenesis of diseases, deeming to be potential therapeutic targets. However, these proteins are generally considered undruggable as they lack an enzymatic catalytic site or a ligand-binding
Daniel P Bondeson et al.
Annual review of pharmacology and toxicology, 57, 107-123 (2016-10-13)
Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of
Kedra Cyrus et al.
Molecular bioSystems, 7(2), 359-364 (2010-10-06)
Conventional genetic approaches have provided a powerful tool in the study of proteins. However, these techniques often preclude selective manipulation of temporal and spatial protein functions, which is crucial for the investigation of dynamic cellular processes. To overcome these limitations
Momar Toure et al.
Angewandte Chemie (International ed. in English), 55(6), 1966-1973 (2016-01-13)
The current inhibitor-based approach to therapeutics has inherent limitations owing to its occupancy-based model: 1) there is a need to maintain high systemic exposure to ensure sufficient in vivo inhibition, 2) high in vivo concentrations bring potential for off-target side effects, and 3) there is
Philipp M Cromm et al.
Cell chemical biology, 24(9), 1181-1190 (2017-06-27)
Traditional pharmaceutical drug discovery is almost exclusively focused on directly controlling protein activity to cure diseases. Modulators of protein activity, especially inhibitors, are developed and applied at high concentration to achieve maximal effects. Thereby, reduced bioavailability and off-target effects can

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務