C-H 功能化
C-H官能化被稱為合成有機化學的聖杯。1 最近,有機化學、有機金屬和催化等領域在理解C-H鍵的反應性以及利用這種洞察力開發強大反應方面都取得了重大進展,這表明將這些策略廣泛引入逆合成詞彙的時機已成熟。2-11 以選擇性和可控制的方式將 C-H 轉換成 C-C、C-N、C-O 或 C-X 鍵的可靠且可預測的轉換,對步驟經濟性和減少廢棄物非常有利。
C-H活化的新方法擴大了特定分子中可針對的位點數量,增加了將其細緻化為更複雜產品的機會。此外,它還可以在有機合成中針對完全不同種類的化學鍵,特別是具有高化學選擇性的化學鍵。結合傳統的官能基化學,C-H 官能化可大幅簡化複雜天然產品和醫藥化合物的化學合成過程。雖然 C-H 功能化邏輯的應用有明顯的優勢,12 許多有機化學的課程尚未更新以反映此方法,進一步的資訊可在 C-H 功能化手冊。
相關技術文章
- Professor Karl Anker Jørgensen and his group have developed ethers which serve as excellent chiral organocatalysts in the direct asymmetric α-functionalization of aldehydes.
- 在資源和時間有限的情況下,針對化學產業的需求,快速開發出多樣化的 (雜) 芳香族支架,確保效率。
- Stanford's Du Bois group advances Rh-catalyzed C–H amination, producing heteroatom motifs in ring heterocycles.
- Aryl chlorides are commonly used in cross-coupling reactions and can serve as key intermediates towards the synthesis of pharmaceutical drug candidates and natural products.
- A recyclable, ligand-free ruthenium catalyst for C–H activation reactions and concomitant C–C bond formation in the presence of water.
- 查看全部 (16)
尋找更多文章
參考資料
1.
Arndtsen BA, Bergman RG, Mobley TA, Peterson TH. 1995. Selective Intermolecular Carbon-Hydrogen Bond Activation by Synthetic Metal Complexes in Homogeneous Solution. Acc. Chem. Res.. 28(3):154-162. https://doi.org/10.1021/ar00051a009
2.
He J, Wasa M, Chan KSL, Shao Q, Yu J. 2017. Palladium-Catalyzed Transformations of Alkyl C?H Bonds. Chem. Rev.. 117(13):8754-8786. https://doi.org/10.1021/acs.chemrev.6b00622
3.
Wang D, Weinstein AB, White PB, Stahl SS. 2018. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chem. Rev.. 118(5):2636-2679. https://doi.org/10.1021/acs.chemrev.7b00334
4.
Davies HML, Morton D. 2016. Recent Advances in C?H Functionalization. J. Org. Chem.. 81(2):343-350. https://doi.org/10.1021/acs.joc.5b02818
5.
Upp DM, Lewis JC. 2017. Selective C?H bond functionalization using repurposed or artificial metalloenzymes. Current Opinion in Chemical Biology. 3748-55. https://doi.org/10.1016/j.cbpa.2016.12.027
6.
Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. The medicinal chemist's toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev.. 45(3):546-576. https://doi.org/10.1039/c5cs00628g
7.
Yamaguchi J, Yamaguchi AD, Itami K. 2012. C?H Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angew. Chem. Int. Ed.. 51(36):8960-9009. https://doi.org/10.1002/anie.201201666
8.
Lyons TW, Sanford MS. 2010. Palladium-Catalyzed Ligand-Directed C?H Functionalization Reactions. Chem. Rev.. 110(2):1147-1169. https://doi.org/10.1021/cr900184e
9.
Wencel-Delord J, Dröge T, Liu F, Glorius F. 2011. Towards mild metal-catalyzed C?H bond activation. Chem. Soc. Rev.. 40(9):4740. https://doi.org/10.1039/c1cs15083a
10.
Arockiam PB, Bruneau C, Dixneuf PH. 2012. Ruthenium(II)-Catalyzed C?H Bond Activation and Functionalization. Chem. Rev.. 112(11):5879-5918. https://doi.org/10.1021/cr300153j
11.
Engle KM, Mei T, Wasa M, Yu J. 2012. Weak Coordination as a Powerful Means for Developing Broadly Useful C?H Functionalization Reactions. Acc. Chem. Res.. 45(6):788-802. https://doi.org/10.1021/ar200185g
12.
Gutekunst WR, Baran PS. 2011. C?H functionalization logic in total synthesis. Chem. Soc. Rev.. 40(4):1976. https://doi.org/10.1039/c0cs00182a
登入以繼續
若要繼續閱讀,請登入或建立帳戶。
還沒有帳戶?