Skip to Content
Merck
  • In vitro characterization of self-assembled anterior cruciate ligament cell spheroids for ligament tissue engineering.

In vitro characterization of self-assembled anterior cruciate ligament cell spheroids for ligament tissue engineering.

Histochemistry and cell biology (2014-09-27)
M Hoyer, C Meier, A Breier, J Hahner, G Heinrich, N Drechsel, M Meyer, C Rentsch, L-A Garbe, W Ertel, A Lohan, G Schulze-Tanzil
ABSTRACT

Tissue engineering of an anterior cruciate ligament (ACL) implant with functional enthesis requires site-directed seeding of different cell types on the same scaffold. Therefore, we studied the suitability of self-assembled three-dimensional spheroids generated by lapine ACL ligament fibroblasts for directed scaffold colonization. The spheroids were characterized in vitro during 14 days in static and 7 days in dynamic culture. Size maintenance of self-assembled spheroids, the vitality, the morphology and the expression pattern of the cells were monitored. Additionally, we analyzed the total sulfated glycosaminoglycan, collagen contents and the expression of the ligament components type I collagen, decorin and tenascin C on protein and for COL1A1, DCN and TNMD on gene level in the spheroids. Subsequently, the cell colonization of polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) polymer scaffolds was assessed in response to a directed, spheroid-based seeding technique. ACL cells were able to self-assemble spheroids and survive over 14 days. The spheroids decreased in size but not in cellularity depending on the culture time and maintained or even increased their differentiation state. The area of P[LA-CL] scaffolds, colonized after 14 days by the cells of one spheroid, was in average 4.57 ± 2.3 mm(2). Scaffolds consisting of the polymer P[LA-CL] were more suitable for colonization by spheroids than PDS embroideries. We conclude that ACL cell spheroids are suitable as site-directed seeding strategy for scaffolds in ACL tissue engineering approaches and recommend the use of freshly assembled spheroids for scaffold colonization, due to their balanced proliferation and differentiation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Sigma-Aldrich
Glycine, BioUltra, for molecular biology, ≥99.0% (NT)
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Sigma-Aldrich
Glycine, tested according to Ph. Eur.
Sigma-Aldrich
Aniline, ReagentPlus®, 99%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Tris(tert-butoxy)silanol, 99.999%
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Supelco
4-(Dimethylamino)benzaldehyde solution, 10 g/L in isopropanol, for TLC derivatization
Sigma-Aldrich
4-(Dimethylamino)benzaldehyde, puriss. p.a., reag. Ph. Eur., ≥99% (perchloric acid titration)
Sigma-Aldrich
Ammonia, puriss., anhydrous, ≥99.95%
SAFC
Glycine
Sigma-Aldrich
4-(Dimethylamino)benzaldehyde, ACS reagent, 99%
Sigma-Aldrich
Glycine, 99%, FCC
Sigma-Aldrich
Glycine, puriss. p.a., reag. Ph. Eur., buffer substance, 99.7-101% (calc. to the dried substance)
Sigma-Aldrich
Gram′s safranin solution, for microscopy
Sigma-Aldrich
Glycine, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Sigma-Aldrich
Aniline, ACS reagent, ≥99.5%
Sigma-Aldrich
Ammonia, anhydrous, ≥99.98%
Sigma-Aldrich
4-(Dimethylamino)benzaldehyde, 98%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)