Skip to Content
Merck
All Photos(1)

Key Documents

D9380

Sigma-Aldrich

DNA Polymerase I from Escherichia coli lysogenic for NM 964

buffered aqueous glycerol solution

Synonym(s):

Kornberg Polymerase

Sign Into View Organizational & Contract Pricing


About This Item

CAS Number:
Enzyme Commission number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.53

grade

for molecular biology

Quality Level

form

buffered aqueous glycerol solution

mol wt

109 kDa

concentration

5,000-15,000 units/mL

UniProt accession no.

foreign activity

Endonuclease, none detected

shipped in

wet ice

storage temp.

−20°C

Gene Information

Escherichia coli K12 ... polA(948356)

Looking for similar products? Visit Product Comparison Guide

General description

DNA polymerase I (holoenzyme) has 5′→3′ and 3′→5′ exonuclease activities in addition to its synthetic activity. This bifunctional activity enables the enzyme to use nicks or gaps in double stranded DNA as starting points for DNA synthesis. The 5′→3′ exonuclease activity degrades the DNA strand complementary to the template strand beginning at the nick. DNA synthesis begins at the 3′-end of the nick and produces a new strand of DNA complementary to the template. The net result is the movement of the polymerase along the template strand (nick translation) until the DNA complementary to the template (from the site of the original nick to the 5′-end of the template strand) is replaced.

Application

DNA Polymerase I from Escherichia coli has been used to study the effects of the anti-tumor drug cis-diaminedichloroplatinum (II) on the enzyme activity.
Suitable for:
  • Highly specific DNA probes by nick translation
  • In vitro synthesis of complementary cDNA strand
  • In vitro synthesis of DNA
  • Produce blunt ends from 5′ and 3′ overhangs

Components

DNase Polymerase I is supplied in a solution of 50% glycerol containing 100 mM potassium phosphate buffer (pH 6.5), and 1 mM dithiothreitol.

Unit Definition

One unit converts 10 nanomoles of deoxyribonucleoside triphosphates into acid insoluble material in 30 min at 37 °C.

Pictograms

Health hazard

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Resp. Sens. 1

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Inhibition of Escherichia coli DNA polymerase-I by the anti-cancer drug cis-diaminedichloroplatinum(II): what roles do polymerases play in cis-platin-induced cytotoxicity?
Rebecca K
Febs Letters (1999)
Lehman, I.R., et al.
The Enzymes, 14A, 16-38 (1981)
U Gubler et al.
Gene, 25(2-3), 263-269 (1983-11-01)
A simple method for generating cDNA libraries from submicrogram quantities of mRNA is described. It combines classical first-strand synthesis with the novel RNase H-DNA polymerase I-mediated second-strand synthesis [Okayama, H., and Berg, P., Mol. Cell. Biol. 2 (1982) 161-170]. Neither
H Okayama et al.
Molecular and cellular biology, 2(2), 161-170 (1982-02-01)
A widely recognized difficulty of presently used methods for cDNA cloning is obtaining cDNA segments that contain the entire nucleotide sequence of the corresponding mRNA. The cloning procedure described here mitigates this shortcoming. Of the 10(5) plasmid-cDNA recombinants obtained per
J M D'Alessio et al.
Nucleic acids research, 16(5), 1999-2014 (1988-03-25)
A simple method for generating cDNA libraries has been described (1) in which RNase H-DNA polymerase I-mediated second-strand cDNA synthesis primes from an RNA oligonucleotide derived from the 5' (capped) end of mRNA. The size of this oligonucleotide and the

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service