We determined the effects of low-level prenatal MeHg exposure on neuronal migration in the developing rat cerebral cortex using in utero electroporation. We used offspring rats born to dams that had been exposed to saline or various doses of MeHg
Mangiferin (MGN), a C-glucosylxanthone was investigated for its ability to protect against methylmercury (MeHg) induced neurotoxicity by employing IMR-32 (human neuroblastoma) cell line. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and clonogenic cell survival assays confirmed the efficacy of MGN supplementation in attenuating MeHg-induced
Journal of molecular neuroscience : MN, 49(1), 162-171 (2012-12-04)
Overexposure to methylmercury (MeHg) has been known to induce neurotoxicity. The objective of this study is to explore mechanisms that contribute to MeHg-induced nerve cell apoptosis focusing on the alteration of intracellular Ca(2+) homeostasis and expression of N-methyl-D-aspartate receptors (NMDARs)
Toxicological sciences : an official journal of the Society of Toxicology, 125(1), 56-68 (2011-10-11)
Mercury is an established worldwide environmental pollutant with well-known toxicity affecting neurodevelopment in humans, but the molecular basis of cytotoxicity and the detoxification procedure are still unclear. Here we examined the involvement of the canonical transient receptor potential (TRPC) channel
Archives of environmental contamination and toxicology, 63(4), 628-636 (2012-08-31)
The in vivo and in vitro pharmacokinetics of mercury (Hg) were compared between methylmercury chloride (MeHg·Cl) and methylmercury cysteine (MeHg-Cys) using rats and Caco2 cells because humans can be exposed to MeHg compounds through dietary fish. The in vivo pharmacokinetics
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.