Journal of biomedical materials research. Part A, 101(1), 115-122 (2012-07-25)
Cellulose acetate butyrate nanofibers were prepared separately by two electrospinning techniques; a needleless electrospinning using a disc as spinneret and a rotary drum as collector and a conventional needle electrospinning using a rotary drum as collector. Compared to the needle-electrospun
The purpose of this study was to formulate budesonide (BUD) compression-coated tablets for colonic specific delivery. Pectin and guar gum were used as enzyme-dependent polymers. For comparison purposes, both pH- and time-dependent polymers were also tried. In vitro release studies
Journal of microencapsulation, 21(1), 47-57 (2004-01-14)
Theophylline microspheres were prepared by the emulsion-solvent evaporation method using cellulose acetate butyrate (CAB381-20) and mixtures of CAB381-20(R) and cellulose acetate phthalate. The physical state of the drug, polymers and microspheres surfaces were determined using scanning electron microscopy. For those
Journal of pharmaceutical and biomedical analysis, 35(4), 779-788 (2004-06-15)
The purpose of this study was to qualitatively and quantitatively determine potential cellulose acetate butyrate (CAB) extractables in a way to meaningfully predict the in vivo exposure resulting from clinical administration. Extractions of CAB-381-20 were performed in several solvent systems
Sulfopropylated dextran microspheres (SP-Ms), (Dm = 80 microm) loaded with a water soluble drug (Tetracycline HCl), were included in cellulose acetate butyrate (CAB) microcapsules. Spherical CAB microcapsules were obtained by oil in water (o/w) solvent evaporation method in the presence
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.