SnS(2) nanocrystals with adjustable sizes were synthesized via a hydrothermal method from the aqueous solution of common and inexpensive SnCl(4)·5H(2)O, thioacetamide and citric acid, simply by varying the reaction temperature and reaction time. The structures, Brunauer-Emmett-Teller (BET) specific surface areas
Journal of the American Chemical Society, 132(35), 12174-12175 (2010-08-19)
Semiconductor superlattice micro-/nanowires could greatly increase the versatility and power of modulating electronic (or excitonic, photonic) transport, optical properties. In this communication, we report growth of a semiconductor CdS/CdS:SnS(2) superlattice microwire through a coevaporation technique with microenvironmental control. Such a
SnS nanocrystals have been synthesized in a simple and facile way. Sn(6)O(4)(OH)(4) is introduced to synthesize tin sulfide, which is used as tin precursor. By changing the reaction conditions (reaction temperature and Sn/S molar ratio), SnS nanocrystals with different shape
We demonstrate a practical sensing platform, consisting of SnO(2) nanoparticle-decorated semiconducting single-walled carbon nanotubes assembled on gold electrodes via a dielectrophoretic process, for highly sensitive CO detection with fast response at room temperature. The highest sensitivity obtained was 0.27 and
Journal of nanoscience and nanotechnology, 11(4), 3215-3221 (2011-07-23)
SnS2 nanoparticles were synthesized through a simple wet chemical process at room temperature. The SnS2 nanoparticles were approximately spherical in shape and had diameter about 3-4 nm. SnS2-sensitized TiO2 electrodes were fabricated by the immersion of chemically modified TiO2 to
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.