Skip to Content
Merck
All Photos(2)

Key Documents

667420

Sigma-Aldrich

1H,1H,2H,2H-Perfluorooctyltriethoxysilane

98%

Synonym(s):

Triethoxy(1H,1H,2H,2H-perfluoro-1-octyl)silane, Triethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octyl)silane

Sign Into View Organizational & Contract Pricing

Select a Size

5 G
€175.00
25 G
€573.00

€175.00


Please contact Customer Service for Availability

Request a Bulk Order

Select a Size

Change View
5 G
€175.00
25 G
€573.00

About This Item

Empirical Formula (Hill Notation):
C14H19F13O3Si
CAS Number:
Molecular Weight:
510.36
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

€175.00


Please contact Customer Service for Availability

Request a Bulk Order

Assay

98%

refractive index

n20/D 1.344

density

1.3299 g/mL at 25 °C

SMILES string

CCO[Si](CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)(OCC)OCC

InChI

1S/C14H19F13O3Si/c1-4-28-31(29-5-2,30-6-3)8-7-9(15,16)10(17,18)11(19,20)12(21,22)13(23,24)14(25,26)27/h4-8H2,1-3H3

InChI key

AVYKQOAMZCAHRG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

1H,1H,2H,2H-Perfluorooctyltriethoxysilane(FOTS) is a fluorinated alkyl silane that is majorly used for improving the wettability of the substrate by lowering the surface energy. It facilitates a superhydrophobic coating by enriching the surface with CF3 group and a water contact angle above 150°.[1][2][3]
Triethoxy(1H,1H,2H,2H-perfluoro-1-octyl)silane (POTS) is a fluorine based polymer. POTS possesses low surface free energy leading to its anti-adhesive behavior to polar and non-polar substances. It shows very good weathering stability on account of the carbon- fluorine bond. POTS hydrolyzes in wet environment to form silane based film and self healing anticorrosive polymers, the film formed from the hydrolysis and polycondensation of POTS and water is hydrophobic in nature. This wetting property acts in repelling aqueous electrolyte solution away from metallic substrates and hence providing corrosion protection to metal substrate.

Application

POTS can be used as a silane based coating on poly(vinylidene fluoride) (PVDF) to synthesize a membrane for the removal of hazardous volatile organic compounds.[1] Glass substrates can be modified with POTS to increase the contact angle for 3D reactive inkjet printing of polydimethylsiloxane (PDMS).[4] It can also be used in the synthesis of superhydrophobic carbon nanotubes(CNT) hollow membranes for membrane desalination (MD) as eco-friendly products of fresh water.[3] It is deposited on the roughened surface of titanium to render it superhydrophobic. POTS may be used as a component of fluorine modified ORMOCER (Organically Modified Ceramics) coating materials.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Aquatic Chronic 4 - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

EU REACH Annex XVII (Restriction List)

CAS No.

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

3D reactive inkjet printing of polydimethylsiloxane.
Sturgess C, et al.
Journal of Material Chemistry C, 5(37), 9733-9743 (2017)
Tian Li et al.
Science (New York, N.Y.), 364(6442), 760-763 (2019-05-28)
Reducing human reliance on energy-inefficient cooling methods such as air conditioning would have a large impact on the global energy landscape. By a process of complete delignification and densification of wood, we developed a structural material with a mechanical strength
Enhancing membrane performance in removal of hazardous VOCs from water by modified fluorinated PVDF porous material.
Al-Gharabli S, et al.
Journal of Membrane Science , 556, 214-226 (2018)
Xiang Li et al.
ACS applied materials & interfaces, 10(14), 12042-12050 (2018-03-21)
Electrically conductive fabrics with liquid repellency and corrosive resistance are strongly desirable for wearable displays, biomedical sensors, and so forth. In the present work, highly electrically conductive and healable superamphiphobic cotton fabrics are fabricated by a solution-dipping method that involves
Zhongshun Wang et al.
Nanoscale, 9(43), 16749-16754 (2017-10-27)
The performance of surface-enhanced Raman scattering (SERS) for detecting trace amounts of analytes depends highly on the enrichment of the diluted analytes into a small region that can be detected. A super-hydrophobic delivery (SHD) process is an excellent process to

Articles

Recent research highlights tunable properties of inorganic nanoparticles, driving interest in optoelectronics.

Questions

1–2 of 2 Questions  
  1. How is shipping temperature determined? And how is it related to the product storage temperature?

    1 answer
    1. Products may be shipped at a different temperature than the recommended long-term storage temperature. If the product quality is sensitive to short-term exposure to conditions other than the recommended long-term storage, it will be shipped on wet or dry-ice. If the product quality is NOT affected by short-term exposure to conditions other than the recommended long-term storage, it will be shipped at ambient temperature. As shipping routes are configured for minimum transit times, shipping at ambient temperature helps control shipping costs for our customers. For more information, please refer to the Storage and Transport Conditions document: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/316/622/storage-transport-conditions-mk.pdf

      Helpful?

  2. How can I determine the shelf life / expiration / retest date of this product?

    1 answer
    1. If this product has an expiration or retest date, it will be shown on the Certificate of Analysis (COA, CofA). If there is no retest or expiration date listed on the product's COA, we do not have suitable stability data to determine a shelf life. For these products, the only date on the COA will be the release date; a retest, expiration, or use-by-date will not be displayed.
      For all products, we recommend handling per defined conditions as printed in our product literature and website product descriptions. We recommend that products should be routinely inspected by customers to ensure they perform as expected.
      For products without retest or expiration dates, our standard warranty of 1 year from the date of shipment is applicable.
      For more information, please refer to the Product Dating Information document: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/449/386/product-dating-information-mk.pdf

      Helpful?

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service