跳转至内容
Merck
  • Histological analyses by matrix-assisted laser desorption/ionization-imaging mass spectrometry reveal differential localization of sphingomyelin molecular species regulated by particular ceramide synthase in mouse brains.

Histological analyses by matrix-assisted laser desorption/ionization-imaging mass spectrometry reveal differential localization of sphingomyelin molecular species regulated by particular ceramide synthase in mouse brains.

Biochimica et biophysica acta (2015-09-24)
Masayuki Sugimoto, Yoichi Shimizu, Takeshi Yoshioka, Masato Wakabayashi, Yukari Tanaka, Kenichi Higashino, Yoshito Numata, Shota Sakai, Akio Kihara, Yasuyuki Igarashi, Yuji Kuge
摘要

Sphingomyelin (SM) is synthesized by SM synthase (SMS) from ceramide (Cer). SM regulates signaling pathways and maintains organ structure. SM comprises a sphingoid base and differing lengths of acyl-chains, but the importance of its various forms and regulatory synthases is not known. It has been reported that Cer synthase (CerS) has restricted substrate specificity, whereas SMS has no specificity for different lengths of acyl-chains. We hypothesized that the distribution of each SM molecular species was regulated by expression of the CerS family. Thus, we compared the distribution of SM species and CerS mRNA expression using molecular imaging. Spatial distribution of each SM molecular species was investigated using ultra-high-resolution imaging mass spectrometry (IMS). IMS revealed that distribution of SM molecular species varied according to the lengths of acyl-chains found in each brain section. Furthermore, a combination study using in situ hybridization and IMS revealed the spatial expression of CerS1 to be associated with the localization of SM (d18:1/18:0) in cell body-rich gray matter, and CerS2 to be associated with SM (d18:1/24:1) in myelin-rich white matter. Our study is the first comparison of spatial distribution between SM molecular species and CerS isoforms, and revealed their distinct association in the brain. These observations were demonstrated by suppression of CerS2 using siRNA in HepG2 cells; that is, siRNA for CerS2 specifically decreased C22 very long-chain fatty acid (VLCFA)- and C24 VLCFA-containing SMs. Thus, histological analyses of SM species by IMS could be a useful approach to consider their molecular function and regulative mechanism.

材料
货号
品牌
产品描述

Sigma-Aldrich
2-丙醇, ACS reagent, ≥99.5%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
氢氧化钾, ACS reagent, ≥85%, pellets
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
氯化氢 溶液, 4.0 M in dioxane
Sigma-Aldrich
氢氧化钾, reagent grade, 90%, flakes
Sigma-Aldrich
正己烷, ReagentPlus®, ≥99%
Sigma-Aldrich
异丙醇, meets USP testing specifications
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
1mol 氢氧化钾浓缩液 溶液, 45 wt. % in H2O
Sigma-Aldrich
正己烷, Laboratory Reagent, ≥95%
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
正己烷, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
氢氧化钾, semiconductor grade, pellets, 99.99% trace metals basis (Purity excludes sodium content.)
Sigma-Aldrich
2-丙醇, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Supelco
1mol 氢氧化钾浓缩液 溶液, volumetric, 8.0 M KOH (8.0N)
Sigma-Aldrich
氯化氢 溶液, 2.0 M in diethyl ether
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
氢氧化钾, ≥85% KOH basis, pellets, white
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
异丙醇, ≥99.7%, FCC, FG
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%