跳转至内容
Merck
  • Interactions of amikacin with the RNA model of the ribosomal A-site: computational, spectroscopic and calorimetric studies.

Interactions of amikacin with the RNA model of the ribosomal A-site: computational, spectroscopic and calorimetric studies.

Biochimie (2014-04-29)
Marta Dudek, Julia Romanowska, Tomasz Wituła, Joanna Trylska
摘要

Amikacin is a 2-deoxystreptamine aminoglycoside antibiotic possessing a unique l-HABA (l-(-)-γ-amino-α-hydroxybutyric acid) group and applied in the treatment of hospital-acquired infections. Amikacin influences bacterial translation by binding to the decoding region of the small ribosomal subunit that overlaps with the binding site of aminoacylated-tRNA (A-site). Here, we have characterized thermodynamics of interactions of amikacin with a 27-mer RNA oligonucleotide mimicking the aminoglycoside binding site in the bacterial ribosome. We applied isothermal titration and differential scanning calorimetries, circular dichroism and thermal denaturation experiments, as well as computer simulations. Thermal denaturation studies have shown that amikacin affects only slightly the melting temperatures of the A-site mimicking RNA model suggesting a moderate stabilization of RNA by amikacin. Isothermal titration calorimetry gives the equilibrium dissociation constants for the binding reaction between amikacin and the A-site oligonucleotide in the micromolar range with a favorable enthalpic contribution. However, for amikacin we observe a positive entropic contribution to binding, contrary to other aminoglycosides, paromomycin and ribostamycin. Circular dichroism spectra suggest that the observed increase in entropy is not caused by structural changes of RNA because amikacin binding does not destabilize the helicity of the RNA model. To investigate the origins of this positive entropy change we performed all-atom molecular dynamics simulations in explicit solvent for the 27-mer RNA oligonucleotide mimicking one A-site and the crystal structure of an RNA duplex containing two A-sites. We observed that the diversity of the conformational states of the l-HABA group sampled in the simulations of the complex was larger than for the free amikacin in explicit water. Therefore, the larger flexibility of the l-HABA group in the bound form may contribute to an increase of entropy upon binding.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
阿米卡星 二硫酸盐, potency: 674-786 μg per mg (as amikacin base)
Supelco
氯化钠, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
氯化钠, tested according to Ph. Eur.
Sigma-Aldrich
氯化钠, ≥99%, AR grade
Sigma-Aldrich
氯化钠, AR, ≥99.9%
USP
硫酸阿米卡星, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
氯化钠, tablet
阿米卡星 硫酸酯, European Pharmacopoeia (EP) Reference Standard
系统适用性试验用阿米卡星, European Pharmacopoeia (EP) Reference Standard