跳转至内容
Merck

I1782

Sigma-Aldrich

Inosine Monophosphate Dehydrogenase Type II human

recombinant, expressed in E. coli

别名:

IMP:NAD oxidoreductase, IMPDH II

登录查看公司和协议定价


About This Item

MDL號碼:
分類程式碼代碼:
12352204
NACRES:
NA.54

重組細胞

expressed in E. coli

形狀

solution

比活性

≥0.05 units/mg protein

分子量

~55 kDa

包裝

vial of ≥0.002 unit

UniProt登錄號

相關疾病

cancer

運輸包裝

dry ice

儲存溫度

−70°C

基因資訊

human ... IMPDH2(3615)

相关类别

一般說明

Inosine Monophosphate Dehydrogenase Type II (IMPDH2) is a ubiquitously expressed dominant isoform during developmental stages. IMPDH2 gene is mapped to human chromosome 3p21.31.

應用

Inosine Monophosphate Dehydrogenase Type II human has been used to test the inhibitory effect on vacor adenine dinucleotide (VAD) on its dehydrogenase activity.

生化/生理作用

Inosine Monophosphate Dehydrogenase Type II (IMPDH2) binds to adenosine triphosphate (ATP) and guanosine triphosphate (GTP). It catalyzes the formation of xanthosine monophosphate from inosine monophosphate in the presence of nicotinamide adenine dinucleotide (NAD). IMPDH2 elevated levels in tumors are correlated to its rate-limiting activity in guanosine monophosphate (GMP) synthesis. High levels of IMPDH2 is implicated in glioblastoma (GBM). It is regarded as a potential therapeutic target against tumors, antiviral, and immunosuppression-related pathologies.
Type II is the predominant IMPDH isoform and is specifically linked to a wide range of cancers and lymphocyte proliferation.

單位定義

One unit will produce 1.0 μ mole of XMP from IMP with corresponding reduction of β-NAD per minute at pH 8.0 at 25 °C.

外觀

Solution in 20 mM Tris-HCl, pH 8.0, containing 0.5 mM EDTA and 1 mM DTT.

儲存類別代碼

12 - Non Combustible Liquids

水污染物質分類(WGK)

WGK 1

閃點(°F)

Not applicable

閃點(°C)

Not applicable

個人防護裝備

Eyeshields, Gloves, multi-purpose combination respirator cartridge (US)


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Bertrand Daignan-Fornier et al.
Cells, 8(1) (2019-01-20)
Purine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is
Rebecca R Midtkandal et al.
Bioorganic & medicinal chemistry letters, 22(16), 5204-5207 (2012-07-17)
2-Deoxy-C-nucleosides are a subcategory of C-nucleosides that has not been explored extensively, largely because the synthesis is less facile. Flexible synthetic procedures giving access to 2-deoxy-C-nucleosides are therefore of interest. To exemplify the versatility and highlight the limitations of a
Travis J Loya et al.
Nucleic acids research, 40(15), 7476-7491 (2012-05-09)
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding
Lizbeth Hedstrom
Critical reviews in biochemistry and molecular biology, 47(3), 250-263 (2012-02-16)
The inosine monophosphate dehydrogenase (IMPDH)/guanosine monophosphate reductase (GMPR) family of (β/α)(8) enzymes presents an excellent opportunity to investigate how subtle changes in enzyme structure change reaction specificity. IMPDH and GMPR bind the same ligands with similar affinities and share a
Craig D Kaplan et al.
PLoS genetics, 8(4), e1002627-e1002627 (2012-04-19)
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门