The intestinal bacterial metabolites of ginsenosides are responsible for the main pharmacological activities of ginseng. The purpose of this study was to find whether these metabolites influence hepatic metabolic enzymes and to predict the potential for ginseng-prescription drug interactions. Utilizing
The Journal of pharmacology and experimental therapeutics, 300(2), 417-420 (2002-01-24)
The adrenochrome reaction (oxidation of epinephrine to adrenochrome) has been widely employed as a standard assay for reactive oxygen species, produced under a variety of conditions, including those produced during cytochrome P450 (CYP)-mediated oxidation of substrates such as cyclosporine. However
Drug metabolism and disposition: the biological fate of chemicals, 36(12), 2410-2413 (2008-09-04)
Cytochrome P450 (P450) reaction phenotyping is a key process toward accurately determining the contribution of different P450s to the metabolism of new chemical entities. The significance of P450s to drug disposition has led to the identification of selective chemical and
European journal of clinical pharmacology, 62(3), 203-208 (2006-01-18)
Macrolide antibiotics are mechanism-based inactivators of CYP3A enzymes that exhibit varying degrees of inhibitory potency. Our aim was to predict quantitatively the drug-drug interaction (DDI) potential of five macrolides from in vitro studies using testosterone as the CYP3A substrate, and
Drug metabolism and disposition: the biological fate of chemicals, 34(2), 305-310 (2005-11-22)
To investigate the pharmacokinetic interaction between cyclosporin A (CsA) and docosahexaenoic acid (DHA) in vivo, 5 mg/kg CsA was orally or intravenously coadministered with DHA (50-200 microg/kg) to rats. The effect of DHA on CYP3A activity was determined using rat