跳转至内容
Merck

918334

Sigma-Aldrich

High-performance silicon anode

100 nm silicon particles in crosslinked conducting polyanaline matrix

别名:

100nm Si, 100nm SiReversible Si, Anode grade, Doped polyaniline, Nano-Si/PANi composite, Si encapsulated in 3D crosslinked polyaniline, Silicon nano particle

登录查看公司和协议定价

选择尺寸

2 G
$783.00

$783.00


请联系客服了解存货情况

获取大包装报价

选择尺寸

变更视图
2 G
$783.00

About This Item

UNSPSC代码:
12352103
NACRES:
NA.23

$783.00


请联系客服了解存货情况

获取大包装报价

质量水平

表单

powder

颜色

dark

正在寻找类似产品? 访问 产品对比指南

应用

Silicon is a most promising next generation lithium ion battery electrode material but it suffers poor cyclability due to the volume expansion that results in loss of electrical contact and unstable SEI.[1]
This Si composite product is made by encapsulating nano-Si particles in the 3D cross-linked conductive polymer framework. It not only allows fast electrical and ionic transport, but also provides free space to allow giant volume expansion. This Si composite provides a ready-to-use electrochemically active nano-Si anode that would [1] increase the capacity of conventional lithium ion battery, and [2] improve the cycle-life performance of Si-based anodes.[2][3][4][5][6]

储存分类代码

11 - Combustible Solids

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our 文件 section.

如需帮助,请联系 客户支持

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Deformation and stress in electrode materials for Li-ion batteries.
Mukhopadhyay M, et al.
Progress in Materials Science, 63, 58-116 (2014)
Ye Shi et al.
Nano letters, 17(3), 1906-1914 (2017-02-14)
Controlling architecture of electrode composites is of particular importance to optimize both electronic and ionic conduction within the entire electrode and improve the dispersion of active particles, thus achieving the best energy delivery from a battery. Electrodes based on conventional
Borui Liu et al.
Nano letters, 13(7), 3414-3419 (2013-06-22)
Silicon is considered one of the most promising anode materials for high-performance Li-ion batteries due to its 4200 mAh/g theoretical specific capacity, relative abundance, low cost, and environmental benignity. However, silicon experiences a dramatic volume change (∼300%) during full charge/discharge
Ye Shi et al.
Advanced materials (Deerfield Beach, Fla.), 29(22) (2017-03-23)
This study develops a tunable 3D nanostructured conductive gel framework as both binder and conductive framework for lithium ion batteries. A 3D nanostructured gel framework with continuous electron pathways can provide hierarchical pores for ion transport and form uniform coatings
Hui Wu et al.
Nature communications, 4, 1943-1943 (2013-06-05)
Silicon has a high-specific capacity as an anode material for Li-ion batteries, and much research has been focused on overcoming the poor cycling stability issue associated with its large volume changes during charging and discharging processes, mostly through nanostructured material

Questions

Reviews

No rating value

Active Filters

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持