A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and
Here we demonstrate that graphene nanoribbons (GNRs) free of oxidized surfaces can be prepared in large batches and 100% yield by splitting multiwalled carbon nanotubes (MWCNTs) with potassium vapor. If desired, exfoliation is attainable in a subsequent step using chlorosulfonic
A thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was
Advanced materials (Deerfield Beach, Fla.), 25(43), 6298-6302 (2013-09-03)
A facile and cost-effective approach for the fabrication of a hierarchical nanocomposite material of graphene-wrapped MnO2 -graphene nanoribbons (GMG) is developed. The resulting composite has a high specific capacity and an excellent cycling stability owing to the synergistic combination of
Graphene is a unique two-dimensional (2D) structure of monolayer
carbon atoms packed into a dense honeycomb crystal that has attracted
great interest due to its diverse and fascinating properties.
Since its discovery little more than a decade ago,1 the two-dimensional (2D) allotrope of carbon—graphene—has been the subject of intense multidisciplinary research efforts.