跳转至内容
Merck

21240

Sigma-Aldrich

硅化钙

technical

登录查看公司和协议定价


About This Item

线性分子式:
CaSi2
CAS号:
分子量:
96.25
EC號碼:
MDL號碼:
分類程式碼代碼:
12352103
PubChem物質ID:
NACRES:
NA.23

等級

technical

形狀

powder

成份

Ca, 30-33%
Si, 60-62%

SMILES 字串

[Ca++].[Si-]#[Si-]

InChI

1S/Ca.Si2/c;1-2/q+2;-2

InChI 密鑰

ATJCUTDHOFKCKB-UHFFFAOYSA-N

正在寻找类似产品? 访问 产品对比指南

象形圖

Flame

訊號詞

Danger

危險聲明

危險分類

Water-react 2

儲存類別代碼

4.3 - Hazardous materials which set free flammable gases upon contact with water

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable

個人防護裝備

Eyeshields, Gloves, type P3 (EN 143) respirator cartridges


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

其他客户在看

Slide 1 of 3

1 of 3

Chao He et al.
Biomaterials, 255, 120181-120181 (2020-06-23)
Breast cancer (BC) is the most common malignant disease affecting women's health worldwide. The benefits from conventional therapeutic modalities are severely limited. An increasing number of promising photothermal materials have been recently developed and introduced into the therapeutic regimens of
Parthiban Pazhamalai et al.
ACS applied materials & interfaces, 11(1), 624-633 (2018-11-27)
Two-dimensional siloxene sheets are an emerging class of materials with an eclectic range of potential applications including electrochemical energy conversion and storage sectors. Here, we demonstrated the dehydrogenation/dehydroxylation of siloxene sheets by thermal annealing at high temperature (HT) and investigated
Karthikeyan Krishnamoorthy et al.
Nature communications, 11(1), 2351-2351 (2020-05-13)
The design and development of self-charging supercapacitor power cells are rapidly gaining interest due to their ability to convert and store energy in an integrated device. Here, we have demonstrated the fabrication of a self-charging supercapacitor using siloxene sheets as
Xiaoliang Yan et al.
Small (Weinheim an der Bergstrasse, Germany), 16(35), e2001435-e2001435 (2020-08-06)
1D silicon-based nanomaterials, renowned for their unique chemical and physical properties, have enabled the development of numerous advanced materials and biomedical technologies. Their production often necessitates complex and expensive equipment, requires hazardous precursors and demanding experimental conditions, and involves lengthy
Xiaoliang Yan et al.
Nature communications, 10(1), 2608-2608 (2019-06-15)
Two-dimensional (2D) materials are of considerable interest for catalyzing the heterogeneous conversion of CO2 to synthetic fuels. In this regard, 2D siloxene nanosheets, have escaped thorough exploration, despite being composed of earth-abundant elements. Herein we demonstrate the remarkable catalytic activity

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门