Skip to Content
MilliporeSigma
  • Protective effects of green tea on antioxidative biomarkers in chemical laboratory workers.

Protective effects of green tea on antioxidative biomarkers in chemical laboratory workers.

Toxicology and industrial health (2013-04-12)
Heidary Shayesteh Tavakol, Ranjbar Akram, Sayadi Azam, Zadkhosh Nahid
ABSTRACT

Chemical materials are environmental contaminants, are extensively used in laboratories, and may cause various forms of health hazards in laboratory workers. Therefore, this toxicity most likely is a result of the oxidative metabolism of chemical to reactive products. As green tea (GT) possesses antioxidant effects, the objective of this study was to examine any amelioration oxidative stress in chemical laboratory workers drinking one cup (3 g/300 ml water) of freshly prepared tea once daily. Baseline characteristics including age, sex, smoking, fruit consumption, and duration of exposure were recorded via questionnaire to the subjects. Saliva level oxidative stress parameters such as total antioxidant capacity (TAC), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were estimated before and after consumption of GT in these workers. Treatment of subjects with GT induced a significant reduction in saliva GPx activity (406.61 ± 22.07 vs. 238.96 ± 16.26 U/l p = 0.001) and induction in TAC (0.46 ± 0.029 μmol/ml vs. 0.56 ± 0.031, p = 0.016). No statistically significant alteration was found for saliva SOD (0.080 ± 0.0019 vs. 0.079 ± 0.0014, p > 0.05) and CAT (20.36 ± 0.69 vs. 19.78 ± 0.71, p > 0.05) after 28 days treatment by GT. These results demonstrate that drinking GT during chemical exposure can reduce several parameters indicative of oxidative stress. In conclusion, using GT as a dietary supplement can be a rational protocol to control source of hazards in chemical laboratory workers.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Butanol, JIS special grade, ≥99.0%
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
Tris(hydroxymethyl)aminomethane, ≥99.8%
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
Acetic acid solution, 1 M, 1 N
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Tris(hydroxymethyl)aminomethane, JIS special grade, ≥99.0%
Sigma-Aldrich
Tris(hydroxymethyl)aminomethane, ≥99.8%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Trichloroacetic acid, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Trizma® base, ≥99.0% (T)
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Trizma® base, BioUltra, for molecular biology, ≥99.8% (T)
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Tris(hydroxymethyl)aminomethane, ACS reagent, ≥99.8%
Supelco
1-Butanol, suitable for HPLC, 99.8%
Supelco
2,4,6-Tris(2-pyridyl)-s-triazine, for spectrophotometric det. (of Fe), ≥98%
Sigma-Aldrich
Trichloroacetic acid, suitable for electrophoresis, suitable for fixing solution (for IEF and PAGE gels), ≥99%
Sigma-Aldrich
Trizma® base, BioXtra, pH 10.5-12.0 (1 M in H2O), ≥99.9% (titration)
Sigma-Aldrich
Trizma® base, ≥99.9% (titration), crystalline
Sigma-Aldrich
2-Thiobarbituric acid, ≥98%
Sigma-Aldrich
Tromethamine, meets USP testing specifications
Sigma-Aldrich
Trichloroacetic acid, ACS reagent, for the determination of Fe in blood according to Heilmeyer, ≥99.5%
Sigma-Aldrich
1-Butanol, for molecular biology, ≥99%
Sigma-Aldrich
Trizma® base, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
Trichloroacetic acid, ACS reagent, ≥99.0%