Skip to Content
MilliporeSigma
All Photos(1)

Documents

765139

Sigma-Aldrich

Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide)

PEG average Mn 5,000, PLGA Mn 7,000

Synonym(s):

PEG-PLGA, Polyethylene glycol, mPEG-b-PLGA

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
H[(C3H4O2)x(C2H2O2)y]mO[C2H4O]nCH3
UNSPSC Code:
12162002
NACRES:
NA.23

form

solid

feed ratio

lactide:glycolide 50:50

mol wt

PEG average Mn 5,000
PLGA Mn 7,000
average Mn 12,000 (total)

degradation timeframe

1-4 weeks

transition temp

Tg 24 °C
Tm 38-43 °C

PDI

<2.0

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Amphiphilic block copolymers (AmBC) are made up of two chemically different homopolymer blocks. One of the block is hydrophilic and the other one is hydrophobic. These macromolecules have the properties to self-assemble when dissolved in an aqueous media. PEG-PLGA is one the most commonly used biodegradable amphiphilic block copolymers for drug delivery applications. PEG is the hydrophilic part and PLGA is the hydrophobic part.

Application

Used in the synthesis of targeted nanoparticles which are used for differential delivery and controlled release of drugs.
forming "stealth" pegylated microparticles

Features and Benefits

  • Good biocompatibility, low immunogenicity and good degradability.
  • Properties can be easily modulated by changing the block copolymer segment sizes to suit a particular application.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

No data available

flash_point_c

No data available


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Thermosensitive self-assembling block copolymers as drug delivery systems.
Bonacucina, G., Cespi, M., Mencarelli, G., Giorgioni, G., &amp; Palmieri, G. F.
Polymer, 3(2), 779-811 (2011)
Frank Gu et al.
Proceedings of the National Academy of Sciences of the United States of America, 105(7), 2586-2591 (2008-02-15)
There has been progressively heightened interest in the development of targeted nanoparticles (NPs) for differential delivery and controlled release of drugs. Despite nearly three decades of research, approaches to reproducibly formulate targeted NPs with the optimal biophysicochemical properties have remained
PLGA-PEG Encapsulated sitamaquine nanoparticles drug delivery system against Leishmania donovani
Kumara, R., Sahoo, G. C., Pandeya, K., Dasa, V. N. R., Yousuf, M., Ansaria, S. R., &amp; Dasa, P.
Journal of Scientific and Innovative Research, 3(1), 85-90 (2014)

Articles

Micelle formation addresses low solubility in IV drug delivery, overcoming clinical limitations.

Local delivery of bioactive molecules using an implantable device can decrease the amount of drug dose required as well as non-target site toxicities compared to oral or systemic drug administration.

The development of drugs that target specific locations within the human body remains one of the greatest challenges in biomedicine today.

AliAliphatic polyesters, including polylactide and polyglycolide, are biodegradable polymers widely used in medical applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service