Przejdź do zawartości
Merck
Strona głównaZestaw narzędzi do reakcji organicznychTransformacje utleniania jednoelektronowego

Przemiany chemiczne indukowane utlenianiem pojedynczych elektronów: Tworzenie wiązań węgiel-węgiel i selektywne przegrupowanie oksazyrydyny

Shafrizal Rasyid Atriardi, and Sang Kook Woo*

Department of Chemistry University of Ulsan, 93 Daehak-Ro Nam-gu, Ulsan 44610, Republic of Korea

Abstrakt

Kataliza fotoredoks w świetle widzialnym jest ważnym i rozwijającym się obszarem badawczym w dziedzinie zielonej i zrównoważonej syntezy organicznej. Jednym z głównych mechanizmów zaangażowanych w katalizę fotoredoks jest przeniesienie pojedynczego elektronu (SET), które było szeroko badane w naszej grupie w celu opracowania bardziej ekologicznych reakcji tworzenia wiązań węgiel-węgiel i przegrupowania oksazyrydyny. W tym przeglądzie podkreślamy nasze wyniki dotyczące rozwoju i zastosowania neutralnych prekursorów rodników krzemowych do generowania rodników alkilowych i selektywnego przegrupowania oksazyrydyn do nitronów lub amidów.

Wprowadzenie

W ostatnim dziesięcioleciu kataliza fotoredoks w świetle widzialnym zyskała znaczną uwagę w dziedzinie zrównoważonej syntezy organicznej ze względu na niedrogie, obfite i czyste źródła światła oraz łagodne warunki reakcji, które doprowadziły do rozwoju wielu reakcji organicznych, które są ułatwione przez fotokatalizatory światła widzialnego.1 Przeniesienie pojedynczego elektronu (SET), w którym wytwarzane są rodniki, jest jednym z głównych mechanizmów katalizy fotoredoksowej. Mechanizm SET można podzielić na utleniające i redukcyjne cykle wygaszania w zależności od stanu redoks katalizatora w cyklu katalitycznym (Rysunek 1, Część (a)).

U góry znajduje się cykl reprezentujący mechanizm transferu pojedynczych elektronów (SET) katalizy fotoredoks, a poniżej struktury chemiczne popularnych fotokatalizatorów utleniaczy (od lewej do prawej), Ru(bpz)3(PF6)2, Ir(dF(CF3)ppy)2(dtbpy)PF6, soli akrydyniowej Fukuzumiego (Acr+-Mes), 4CzIPN i Cl-4CzIPN.

Rysunek 1. (a) Mechanizm transferu pojedynczych elektronów (SET). (b) Popularne fotokatalizatory utleniające. (Ref. 1)

Wnioski

W niniejszym przeglądzie podsumowaliśmy nasz wkład w rozwój bardziej ekologicznych i zrównoważonych reakcji zachodzących poprzez mechanizm SET w katalizie fotoredoksowej do tworzenia wiązań węgiel-węgiel i przegrupowania oksazyrydyn. Opracowaliśmy neutralne, oparte na krzemie prekursory rodników alkoksymetylowych, hydroksymetylowych i allilowych i wykorzystaliśmy je w reakcjach Giesego, reakcjach RPC i reakcjach addycji iminy do tworzenia nowych wiązań węgiel-węgiel. Reakcje te zapewniają dostęp do szerokiej gamy cennych rusztowań, takich jak etery, alkohole, 2,3-dihydrofurany, α-cyjano-γ-butyrolaktony, γ-butyrolaktony, związki allilowe, gem-difluoroalkeny, β-aminoetery i β-aminoalkohole. Zademonstrowaliśmy również selektywne przegrupowanie oksazirydyn do nitronów i amidów w warunkach fotokatalitycznych. Przegrupowanie oksazirydyn do nitronów było selektywnie obserwowane w acetonitrylu, octanie etylu i acetonie jako rozpuszczalnikach, podczas gdy amidy powstawały w wyniku przegrupowania promowanego słabymi zasadami, które wykorzystuje słabe zasady, takie jak CF3CO2- i DMF. Nasze bieżące wysiłki badawcze mają na celu dalsze ulepszanie prekursorów rodników alkilowych na bazie krzemu do generowania i wykorzystywania różnych rodników alkilowych oraz dalsze badanie chemicznej konwersji oksazyrydyn. Mamy szczerą nadzieję, że nasze badania przyczynią się do rozwoju przyjaznej dla środowiska syntezy organicznej.

Podziękowania

Ta praca była wspierana przez grant National Research Foundation of Korea (NRF) finansowany przez rząd koreański (MSIT) (NRF-2022R1A2C1005108 i 2021R1A4A1027480).

Znaki towarowe. Amberlite® (TDDP Specialty Electronic Materials US 8, LLC).

Powiązane produkty
Loading

Referencje

1.
(a) Narayanam JMR, Stephenson CRJ. 2011. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40(1):102-113. https://doi.org/10.1039/B913880N (b) Tucker JW, Stephenson CRJ. 2012. Shining Light on Photoredox Catalysis: Theory and Synthetic Applications. J. Org. Chem. 77(4):1617-1622. https://doi.org/10.1021/jo202538x (c) Xuan J, Xiao WJ. 2012. Visible-Light Photoredox Catalysis. Angew. Chem., Int. Ed. 51(28):6828-6838. https://doi.org/10.1002/anie.201200223 (d) Prier CK, Rankic DA. MacMillan DWC. 2013. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113(7):5322-5363. https://doi.org/10.1021/cr300503r (e) Fukuzumi S, Ohkubo K. 2014. Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem. 12(32):6059-6071https://doi.org/10.1039/c4ob00843j (f) Romero NA, Nicewicz DA. 2016. Organic Photoredox Catalysis. Chem. Rev. 116(17):10075-10166. https://doi.org/10.1021/acs.chemrev.6b00057 (g) Shaw MH, Twilton J, MacMillan DWC. 2016. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 81(16):6898-6926. https://doi.org/10.1021/acs.joc.6b01449 (h) Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. 2019. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem. Commun. 55(38):5408-5419https://doi.org/10.1039/c9cc01047e (i) Crespi S, Fagnoni M. 2020. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem. Rev. 120(17):9790-9833. https://doi.org/10.1021/acs.chemrev.0c00278 (j) Gontala A, Jang GS, Woo SK. 2021. Visible‐Light Photoredox‐Catalyzed α‐Allylation of α‐Bromocarbonyl Compounds Using Allyltrimethylsilane. Bull. Korean Chem. Soc. 42(3):506-509. https://doi.org/10.1002/bkcs.12219
2.
Rehm D, Weller A. 1970. Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Isr. J. Chem. 8(2):259-271. https://doi.org/10.1002/ijch.197000029
3.
Yasu Y, Koike T, Akita M. 2012. Visible Light-Induced Selective Generation of Radicals from Organoborates by Photoredox Catalysis. Adv. Synth. Catal. 354(18):3414-3420. https://doi.org/10.1002/adsc.201200588
4.
Kitcatt DM, Nicolle S, Lee A. 2022. Direct decarboxylative Giese reactions. Chem. Soc. Rev. 51(4):1415-1453. https://doi.org/10.1039/d1cs01168e
5.
Corcé V, Chamoreau L, Derat E, Goddard J, Ollivier C, Fensterbank L. 2015. Silicates as Latent Alkyl Radical Precursors: Visible‐Light Photocatalytic Oxidation of Hypervalent Bis‐Catecholato Silicon Compounds. Angew Chem Int Ed. 54(39):11414-11418. https://doi.org/10.1002/anie.201504963
6.
Gutiérrez-Bonet Á, Tellis JC, Matsui JK, Vara BA, Molander GA. 2016. 1,4-Dihydropyridines as Alkyl Radical Precursors: Introducing the Aldehyde Feedstock to Nickel/Photoredox Dual Catalysis. ACS Catal. 6(12):8004-8008. https://doi.org/10.1021/acscatal.6b02786
7.
He F, Ye S, Wu J. 2019. Recent Advances in Pyridinium Salts as Radical Reservoirs in Organic Synthesis. ACS Catal. 9(10):8943-8960. https://doi.org/10.1021/acscatal.9b03084
8.
Murarka S. 2018. N‐(Acyloxy)phthalimides as Redox‐Active Esters in Cross‐Coupling Reactions. Adv Synth Catal. 360(9):1735-1753. https://doi.org/10.1002/adsc.201701615
9.
Yoshida J, Maekawa T, Murata T, Matsunaga S, Isoe S. 1990. Electrochemical oxidation of organosilicon compounds. Part 7. The origin of .beta.-silicon effect in electron-transfer reactions of silicon-substituted heteroatom compounds. Electrochemical and theoretical studies. J. Am. Chem. Soc. 112(5):1962-1970. https://doi.org/10.1021/ja00161a049
10.
Gant Kanegusuku AL, Roizen JL. 2021. Recent Advances in Photoredox‐Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angew Chem Int Ed. 60(39):21116-21149. https://doi.org/10.1002/anie.202016666
11.
De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F. 2007. Electrophilicity and Nucleophilicity Index for Radicals. Org. Lett. 9(14):2721-2724. https://doi.org/10.1021/ol071038k
12.
(a) Nakata T. 2005. Total Synthesis of Marine Polycyclic Ethers. Chem. Rev. 105(12):4314-4347. https://doi.org/10.1021/cr040627q (b) Doherty EM, Fotsch C, Bannon AW, Bo Y, Chen N,  Dominguez C, Falsey J, Gavva NR, Katon J, Nixey T, et al. 2007. Novel Vanilloid Receptor-1 Antagonists:  2. Structure−Activity Relationships of 4-Oxopyrimidines Leading to the Selection of a Clinical Candidate. J. Med. Chem. 50(15):3515–3527. https://doi.org/10.1021/jm070190p
13.
(a) Lund T, Wayner DDM, Jonsson M, Larsen AG,  Daasbjerg K. 2001. Oxidation Potentials of α-Hydroxyalkyl Radicals in Acetonitrile Obtained by Photomodulated Voltammetry. J. Am. Chem. Soc. 123(50):12590-12595. https://doi.org/10.1021/ja011217b (b) Jin J, MacMillan DWC. 2015. Direct α-Arylation of Ethers through the Combination of Photoredox-Mediated C-H Functionalization and the Minisci Reaction. Angew. Chem., Int. Ed. 127(5):1585-1589. https://doi.org/10.1002/anie.201410432
14.
Khatun N, Kim MJ, Woo SK. 2018. Visible-Light Photoredox-Catalyzed Hydroalkoxymethylation of Activated Alkenes Using α-Silyl Ethers as Alkoxymethyl Radical Equivalents. Org. Lett. 20(19):6239-6243. https://doi.org/10.1021/acs.orglett.8b02721
15.
Liu W, Khedkar V, Baskar B, Schürmann M, Kumar K. 2011. Branching Cascades: A Concise Synthetic Strategy Targeting Diverse and Complex Molecular Frameworks. Angew. Chem. Int. Ed. 50(30):6900-6905. https://doi.org/10.1002/anie.201102440
16.
Nam SB, Khatun N, Kang YW, Park BY, Woo SK. 2020. Controllable one-pot synthesis for scaffold diversity via visible-light photoredox-catalyzed Giese reaction and further transformation. Chem. Commun. 56(19):2873-2876. https://doi.org/10.1039/c9cc08781h
17.
(a) Wang Y,  Zheng Z, Liu S, Zhang H, Li E, Guo L, Che Y. 2010. Oxepinochromenones, Furochromenone, and their Putative Precursors from the Endolichenic Fungus Coniochaeta sp. J. Nat. Prod. 73(5):920-924. https://doi.org/10.1021/np100071z (b) Rossi D, Nasti R, Collina S, Mazzeo G, Ghidinelli S,  Longhi G, Memo M, Abbate S. 2017. The role of chirality in a set of key intermediates of pharmaceutical interest, 3-aryl-substituted-γ-butyrolactones, evidenced by chiral HPLC separation and by chiroptical spectroscopies. J. Pharm. Biomed. Anal. 144:41-51. https://doi.org/10.1016/j.jpba.2017.01.007
18.
(a) Yamamoto Y, Nishii S, Maruyama K. 1985. The threo-selective reaction of but-2-enyl organometallic compounds with ethylidenemalonates and related compounds. J. Chem. Soc., Chem. Commun. (7):386-388. https://doi.org/10.1039/C39850000386 (b) Yamamoto Y, Nishii S. 1988. The anti-selective Michael addition of allylic organometals to ethylidenemalonates and related compounds. J. Org. Chem. 53(15):3597-3603. https://doi.org/10.1021/jo00250a034 (c) Araki S, Horie T, Kato M, Hirashita T, Yamamura H, Kawai M. 1999. Regioselective allylation and alkylation of electron-deficient alkenes with organogallium and organoindium reagents. Tetrahedron Lett. 40(12):2331-2334. https://doi.org/10.1016/S0040-4039(99)00179-3 (d) Shibata I, Kano T, Kanazawa N, Fukuoka S, Baba A. 2002. Generation of Organotantalum Reagents and Conjugate Addition to Enones. Angew. Chem., Int. Ed. 114(8):1447-1450. https://doi.org/10.1002/1521-3773(20020415)41:8<1389::AID-ANIE1389>3.0.CO;2-D
19.
(a) Mizuno K, Ikeda M, Otsuji Y. 1988. Dual Regioselectivity in the Photoallylation of Electron-Deficient Alkenes by Allylic Silanes. Chem. Lett. 17(9):1507-1510. https://doi.org/10.1246/cl.1988.1507 (b) Mizuno K, Hayamizu T, Maeda H. 2003. Regio- and stereoselective functionalization of electron-deficient alkenes by organosilicon compounds via photoinduced electron transfer. Pure Appl. Chem. 75(8):1049-1054. https://doi.org/10.1351/pac200375081049
20.
Gontala A, Woo SK. 2020. Visible‐Light Photoredox‐Catalyzed α‐Regioselective Conjugate Addition of Allyl Groups to Activated Alkenes. Adv Synth Catal. 362(15):3223-3228. https://doi.org/10.1002/adsc.202000445
21.
Hoyte RM, Denney DB. 1974. Cis-trans isomerization of allylic radicals. J. Org. Chem. 39(17):2607-2612. https://doi.org/10.1021/jo00931a035
22.
(a) Pitzer L, Schwarz J L, Glorius F. 2019. Reductive radical-polar crossover: traditional electrophiles in modern radical reactions. Chem. Sci. 10(36):8285-8291. https://doi.org/10.1039/c9sc03359a (b) Wiles RJ, Molander GA. 2020. Photoredox-Mediated Net-Neutral Radical/Polar Crossover Reactions. Isr. J. Chem. 60(3-4):281-293. https://doi.org/10.1002/ijch.201900166
23.
(a) Hagmann WK. 2008. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 51(15):4359-4369. https://doi.org/10.1021/jm800219f (b) Purser S, Moore PR, Swallow S, Gouverneur V. 2008. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37(2):320-330. https://doi.org/10.1039/ b610213c (c) Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. 2015. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 58(21):8315-8359. https://doi.org/10.1021/acs.jmedchem.5b00258 (d) Oh K, Chi DY. 2021. Direct Fluorination Strategy for the Synthesis of Fluorine-18 Labeled Oligopeptide—[18F]ApoPep-7. Bull. Korean Chem. Soc. 42(8):1161-1166. https://doi.org/10.1002/bkcs.12350
24.
Atriardi SR, Kim J, Anita Y, Woo SK. 2023. Synthesis of gem‐difluoroalkenes via photoredox‐catalyzed defluoroaryloxymethylation of α‐trifluoromethyl alkenes. Bull. Korean Chem. Soc. 44(1):50-54. https://doi.org/10.1002/bkcs.12633
25.
(a) Ager DJ, Prakash I, Schaad DR. 1996. 1,2-Amino Alcohols and Their Heterocyclic Derivatives as Chiral Auxiliaries in Asymmetric Synthesis. Chem. Rev. 96(2):835-876. https://doi.org/10.1021/cr9500038 (b) Bergmeier SC. 2000. The Synthesis of Vicinal Amino Alcohols. Tetrahedron. 56(17):2561-2576. https://doi.org/10.1016/S0040-4020(00)00149-6
26.
Ahn DK, Kang YW, Woo SK. 2019. Oxidative Deprotection ofp-Methoxybenzyl Ethers via Metal-Free Photoredox Catalysis. J. Org. Chem. 84(6):3612-3623. https://doi.org/10.1021/acs.joc.8b02951
27.
Gontala A, Huh H, Woo SK. 2023. Photoredox-Catalyzed Synthesis of β-Amino Alcohols: Hydroxymethylation of Imines with α-Silyl Ether as Hydroxymethyl Radical Precursor. Org. Lett. 25(1):21-26. https://doi.org/10.1021/acs.orglett.2c03633
28.
(a) Hayyan M, Hashim MA, AlNashef IM. 2016. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 116(5):3029-3085. https://doi.org/10.1021/acs.chemrev.5b00407 (b) Tay NES, Nicewicz DA. 2017. Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis. J. Am. Chem. Soc. 139(45):16100-16104. https://doi.org/10.1021/jacs.7b10076
29.
(a) Williamson KS, Michaelis DJ, Yoon TP. 2014. Advances in the Chemistry of Oxaziridines. Chem. Rev. 114(16):8016-8036. https://doi.org/10.1021/cr400611n (b) Davis FA. 2018. Recent applications of N-sulfonyloxaziridines (Davis oxaziridines) in organic synthesis. Tetrahedron. 74(26):3198-3214. https://doi.org/10.1016/j.tet.2018.02.029 (c) Woo SK. 2022. Oxaziridines and Oxazirines. In Comprehensive Heterocyclic Chemistry IV, Vol. 1, 582–611. https://doi.org/10.1016/B978-0-12-409547-2.14812-7
30.
(a) Ohba Y, Kubo K, Sakurai T. 1998. Sensitized ring-opening reactions of 3-(1-naphthyl)-2-(1-naphthalenemethyl) oxaziridine. J. Photochemistry and Photobiology A:  Chemistry. 113(1):45-51. https://doi.org/10.1016/S1010-6030(97)00313-4 (b) Iwano Y, Kawamura Y, Horie T. 1995. Stereoselective Ring Opening of Geometrically Constrained Oxaziridines by Photosensitized Electron Transfer. Chem. Lett. 24:67-68. https://doi.org/10.1246/cl.1995.67 (c) Iwano Y, Kawamura Y, Miyoshi H, Yoshinari T, Horie T. 1994. Photosensitized Electron-Transfer Reaction of 3-Aryl-2-methyloxaziridine: Direct Deoxygenation from the Isomeric Arylnitrone. Bull. Chem. Soc. Jpn. 67(8):2348-2350. https://doi.org/10.1246/bcsj.67.2348
31.
(a) Gothelf KV, Jørgensen KA. 1998. Asymmetric 1,3-Dipolar Cycloaddition Reactions. Chem. Rev. 98(2):863-910. https://doi.org/10.1021/cr970324e (b) Stanley LM, Sibi MP. 2008. Enantioselective Copper-Catalyzed 1,3-Dipolar Cycloadditions. Chem. Rev. 108(8):2887-2902. https://doi.org/10.1021/cr078371m (c) Hashimoto T, Maruoka K. 2015. Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chem. Rev. 115(11), 5366-5412. https://doi.org/10.1021/cr5007182
32.
Jang GS, Lee J, Seo J, Woo SK. 2017. Synthesis of 4-Isoxazolines via Visible-Light Photoredox-Catalyzed [3 + 2] Cycloaddition of Oxaziridines with Alkynes. Org. Lett. 19(23):6448-6451. https://doi.org/10.1021/acs.orglett.7b03369
33.
Oliveros E, Riviere M, Malrieu JP, Teichteil C. 1979. Theoretical exploration of the photochemical rearrangement of oxaziridines. J. Am. Chem. Soc. 101(2):318-322. https://doi.org/10.1021/ja00496a007
34.
Newcomb M, Reeder RA. 1980. Reactions of trans-2-tert-butyl-3-phenyloxaziridine with lithium amide bases. J. Org. Chem. 45(8):1489-1493. https://doi.org/10.1021/jo01296a029
35.
Park J, Park S, Jang GS, Kim RH, Jung J, Woo SK. 2021. Weak base-promoted selective rearrangement of oxaziridines to amides via visible-light photoredox catalysis. Chem. Commun. 57(78):9995-9998. https://doi.org/10.1039/d1cc03855a
Zaloguj się, aby kontynuować

Zaloguj się lub utwórz konto, aby kontynuować.

Nie masz konta użytkownika?