Przejdź do zawartości
Merck

Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases.

Nucleic acids research (2014-06-11)
Radha Krishnakumar, Carissa Grose, Daniel H Haft, Jayshree Zaveri, Nina Alperovich, Daniel G Gibson, Chuck Merryman, John I Glass
ABSTRAKT

Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Supelco
Chloramphenicol, VETRANAL®, analytical standard
Sigma-Aldrich
Chloramphenicol, meets USP testing specifications
Sigma-Aldrich
Chloramphenicol, BioReagent, suitable for plant cell culture
Sigma-Aldrich
Chloramphenicol, ≥98% (HPLC)
Chloramphenicol, European Pharmacopoeia (EP) Reference Standard