Przejdź do zawartości
Merck
  • Molecular cloning, expression, and properties of an unusual aldo-keto reductase family enzyme, pyridoxal 4-dehydrogenase, that catalyzes irreversible oxidation of pyridoxal.

Molecular cloning, expression, and properties of an unusual aldo-keto reductase family enzyme, pyridoxal 4-dehydrogenase, that catalyzes irreversible oxidation of pyridoxal.

The Journal of biological chemistry (2004-07-01)
Nana Yokochi, Yu Yoshikane, Yanee Trongpanich, Kouhei Ohnishi, Toshiharu Yagi
ABSTRAKT

Microbacterium luteolum YK-1 has pyridoxine degradation pathway I. We have cloned the structural gene for the second step enzyme, pyridoxal 4-dehydrogenase. The gene consists of 1,026-bp nucleotides and encodes 342 amino acids. The enzyme was overexpressed under cold shock conditions with a coexpression system and chaperonin GroEL/ES. The recombinant enzyme showed the same properties as the M. luteolum enzyme. The primary sequence of the enzyme was 54% identical with that of d-threo-aldose 1-dehydrogenase from Agrobacterium tumefaciens, a probable aldo-keto reductase (AKR). Upon multiple alignment with enzymes belonging to the 14 AKR families so far reported, pyridoxal 4-dehydrogenase was found to form a new AKR superfamily (AKR15) together with A. tumefaciens d-threo-aldose 1-dehydrogenase and Pseudomonas sp. l-fucose dehydrogenase. These enzymes belong to a distinct branch from the two main ones found in the phylogenic tree of AKR proteins. The enzymes on the new branch are characterized by their inability to reduce the corresponding lactones, which are produced from pyridoxal or sugars. Furthermore, pyridoxal 4-dehydrogenase prefers NAD(+) to NADP(+) as a cofactor, although AKRs generally show higher affinities for the latter.