Przejdź do zawartości
Merck

Structure-activity relations in the oxidation of phenethylamine analogues by recombinant human liver monoamine oxidase A.

Biochemistry (2000-12-07)
R K Nandigama, D E Edmondson
ABSTRAKT

The interaction of recombinant human liver monoamine oxidase A (MAO A) with a series of phenethylamine substrate analogues has been investigated by steady-state and stopped-flow kinetic techniques. Substrate analogues with para substituents exhibit large deuterium kinetic isotope effect on k(cat), on k(cat)/K(m), and on the limiting rate of enzyme reduction in reductive half-reaction experiments. These kinetic isotope effect values range from 5 to 10 with the exception of tyramine, which exhibited smaller steady-state isotope effects (2.3-3.5) than that observed on the rate of flavin reduction (6.9). The stopped-flow data show that imine release from the reduced enzyme is slower than the rate of catalytic turnover. Phenethylamine oxidation by MAO A can be described as the C-H bond cleavage step being rate limiting in catalysis and with oxygen reacting with the reduced enzyme-imine complex. In the case of tyramine, the product release from the oxidized enzyme-imine complex contributes to the rate limitation in catalysis. The binding affinities of a series of para-substituted phenethylamine analogues to MAO A show an increase in affinity of the deprotonated amine with increasing van der Waals volume of the substituent. The limiting rate of enzyme reduction decreases with increasing van der Waals volume of the substituent in a linear manner with no observable electronic contribution as observed previously with benzylamine reduction of MAO A [Miller, J. R., and Edmondson, D. E. (1999) Biochemistry 38, 13670-13683]. Examination of side chain analogues of phenethylamine show 3-phenylpropylamine to be oxidized 2.5-fold more slowly and bound 75-fold more tightly than phenethylamine. 4-Phenylbutylamine is not a substrate for MAO A but is a good competitive inhibitor with a K(i) value of 31 +/- 5 microM. Analysis of the effect of alkyl side chain alterations on binding affinities of a series of arylalkylamine analogues taken from this study and from the literature show a linear correlation with the Taft steric value (E(s)) of the side chain. These results suggest that the binding site for the aryl ring is identical for phenethylamine and for benzylamine analogues and that steric interactions of the alkyl side chain with the enzyme strongly contribute to the binding affinities of a series of reversible inhibitors of MAO A.