Przejdź do zawartości
Merck
  • Insulin stimulates binding of phosphofructokinase to cytoskeleton and increases glucose 1,6-bisphosphate levels in NIH-3T3 fibroblasts, which is prevented by calmodulin antagonists.

Insulin stimulates binding of phosphofructokinase to cytoskeleton and increases glucose 1,6-bisphosphate levels in NIH-3T3 fibroblasts, which is prevented by calmodulin antagonists.

Molecular genetics and metabolism (1998-12-16)
M Ashkenazy-Shahar, H Ben-Porat, R Beitner
ABSTRAKT

We report here a novel mechanism of insulin action in cultures of NIH-3T3 fibroblasts. Our experiments revealed that in these cells, insulin induced a rapid and transient increase in cytoskeleton-bound phosphofructokinase (EC 2.7.1.11), the rate-limiting enzyme in glycolysis, with a corresponding decrease in soluble (cytosolic) activity. Insulin also induced a slower increase in the levels of glucose 1,6-bisphosphate, the potent activator of cytosolic glycolysis. Both the rapid and the slower stimulatory actions of insulin were prevented by treatment with structurally different calmodulin antagonists, which strongly suggest that calmodulin is involved in these effects of insulin. The present and our previous experiments in muscle suggest that rapid, Ca2+-calmodulin-mediated increase in the binding of glycolytic enzymes to cytoskeleton, as well as the slower increase in glucose 1,6-bisphosphate, may be a general mechanism, in different cells, in signal transduction of insulin.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
CGS-9343B, ≥98% (HPLC), powder