Przejdź do zawartości
Merck
  • Functional relationship between initial oxidation of 7-ethoxycoumarin and subsequent conjugation of 7-hydroxycoumarin in isolated perfused rat livers.

Functional relationship between initial oxidation of 7-ethoxycoumarin and subsequent conjugation of 7-hydroxycoumarin in isolated perfused rat livers.

Chemico-biological interactions (1987-02-01)
Y N Cha, M S Dong, S S Hong
ABSTRAKT

Functional relationship between the initial mixed function oxidation of 7-ethoxycoumarin (EC) to 7-hydroxycoumarin (HC) and the subsequent conjugation of this metabolite to sulfate ester and glucuronide has been studied using isolated perfused rat livers. When increasing concentrations of EC (from 25 to 200 microM) were infused, perfused liver can oxidize only up to about 60 nmol of the infused EC to HC per min/g liver tissue. Most of this HC metabolite was released as sulfate ester, but there was a dose dependent shift to a more significant glucuronidation at the expense of the sulfate form. The dose dependent shift observed upon infusions with increasing dose of EC was not extensive so that the major portion of metabolite released was always the sulfate ester. However, the shift observed with HC was extensive and the major portion released was the glucuronide conjugate. Upon infusions with increasing concentrations of HC, the maximal rates of sulfation and glucuronidation were found to be 60 nmol and 120 nmol of HC conjugated per min/g liver tissue, respectively. Furthermore, the ranges in the rates of conjugation for the infused HC were divided into a sulfate ester 'zone' (less than 20 nmol), a dose-dependent shift 'zone' (between 20 and 180 nmol) with the 'cross-over' occurring at 80 nmol/min/g liver, and reaching the maximal conjugation 'capacity' rate (180 nmol), above which the unconjugated free form of HC was released. Under conditions when EC was infused into normal rat livers, the calculated maximal oxidation rate was only 60 nmol of HC produced/min/g liver. Consequently, under such a condition, the oxidation rate may never reach the 'cross-over' rate and this explains the lack of extensive dose-dependent shift and further indicates that there remained a large reserve conjugation capacity (120 nmol/min/g).

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
7-Hydroxycoumarin glucuronide sodium salt