Przejdź do zawartości
Merck

Regulation of thyroid hormone-induced development in vivo by thyroid hormone transporters and cytosolic binding proteins.

General and comparative endocrinology (2015-07-21)
Jinyoung Choi, Christine L Moskalik, Allison Ng, Stephen F Matter, Daniel R Buchholz
ABSTRAKT

Differential tissue sensitivity/responsivity to hormones can explain developmental asynchrony among hormone-dependent events despite equivalent exposure of each tissue to circulating hormone levels. A dramatic vertebrate example is during frog metamorphosis, where transformation of the hind limb, brain, intestine, liver, and tail are completely dependent on thyroid hormone (TH) but occurs asynchronously during development. TH transporters (THTs) and cytosolic TH binding proteins (CTHBPs) have been proposed to affect the timing of tissue transformation based on expression profiles and in vitro studies, but they have not been previously tested in vivo. We used a combination of expression pattern, relative expression level, and in vivo functional analysis to evaluate the potential for THTs (LAT1, OATP1c1, and MCT8) and CTHBPs (PKM2, CRYM, and ALDH1) to control the timing of TH-dependent development. Quantitative PCR analysis revealed complex expression profiles of THTs and CTHBPs with respect to developmental stage, tissue, and TH receptor β (TRβ) expression. For some tissues, the timing of tissue transformation was associated with a peak in the expression of some THTs or CTHBPs. An in vivo overexpression assay by tail muscle injection showed LAT1, PKM2, and CRYM increased TH-dependent tail muscle cell disappearance. Co-overexpression of MCT8 and CRYM had a synergistic effect on cell disappearance. Our data show that each tissue examined has a unique developmental expression profile of THTs and CTHBPs and provide direct in vivo evidence that the ones tested are capable of affecting the timing of developmental responses to TH.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Pyruvate Kinase M2 human, recombinant, expressed in E. coli, specific activity ≥100 unit/mg protein