Przejdź do zawartości
Merck

DNAJB chaperones suppress destabilised protein aggregation via a region distinct from that used to inhibit amyloidogenesis.

Journal of cell science (2021-03-07)
Shannon McMahon, Steven Bergink, Harm H Kampinga, Heath Ecroyd
ABSTRAKT

Disturbances to protein homeostasis (proteostasis) can lead to protein aggregation and inclusion formation, processes associated with a variety of neurodegenerative disorders. DNAJB proteins are molecular chaperones that have been identified as potent suppressors of disease-related protein aggregation. In this work, a destabilised isoform of firefly luciferase (R188Q/R261Q Fluc; termed FlucDM) was overexpressed in cells to assess the capacity of DNAJBs to inhibit inclusion formation. Co-expression of all DNAJB proteins tested significantly inhibited the intracellular aggregation of FlucDM. Moreover, we show that DNAJB proteins suppress aggregation by supporting the Hsp70 (HSPA)-dependent degradation of FlucDM via the proteasome. The serine-rich stretch in DNAJB6 and DNAJB8, essential for preventing fibrillar aggregation, is not involved in the suppression of FlucDM inclusion formation. Conversely, deletion of the C-terminal TTK-LKS motif in DNAJB6 and DNAJB8, a region not required to suppress polyglutamine aggregation, abolished the ability to inhibit inclusion formation by FlucDM. Thus, our data suggest that DNAJB6 and DNAJB8 possess two distinct regions for binding substrates, one that is responsible for binding β-hairpins that form during amyloid formation and another that interacts with exposed hydrophobic patches in aggregation-prone clients. This article has an associated First Person interview with the first author of the paper.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Anti-Mouse IgG (whole molecule)–Peroxidase antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution