Przejdź do zawartości
Merck
  • Norepinephrine Regulation of Adrenergic Receptor Expression, 5' AMP-Activated Protein Kinase Activity, and Glycogen Metabolism and Mass in Male Versus Female Hypothalamic Primary Astrocyte Cultures.

Norepinephrine Regulation of Adrenergic Receptor Expression, 5' AMP-Activated Protein Kinase Activity, and Glycogen Metabolism and Mass in Male Versus Female Hypothalamic Primary Astrocyte Cultures.

ASN neuro (2020-11-13)
Mostafa M H Ibrahim, Khaggeswar Bheemanapally, Paul W Sylvester, Karen P Briski
ABSTRAKT

Norepinephrine (NE) control of hypothalamic gluco-regulation involves astrocyte-derived energy fuel supply. In male rats, exogenous NE regulates astrocyte glycogen metabolic enzyme expression in vivo through 5'-AMP-activated protein kinase (AMPK)-dependent mechanisms. Current research utilized a rat hypothalamic astrocyte primary culture model to investigate the premise that NE imposes sex-specific direct control of AMPK activity and glycogen mass and metabolism in these glia. In male rats, NE down-regulation of pAMPK correlates with decreased CaMMKB and increased PP1 expression, whereas noradrenergic augmentation of female astrocyte pAMPK may not involve these upstream regulators. NE concentration is a critical determinant of control of hypothalamic astrocyte glycogen enzyme expression, but efficacy varies between sexes. Data show sex variations in glycogen synthase expression and glycogen phosphorylase-brain and -muscle type dose-responsiveness to NE. Narrow dose-dependent NE augmentation of astrocyte glycogen content during energy homeostasis infers that NE maintains, over a broad exposure range, constancy of glycogen content despite possible changes in turnover. In male rats, beta1- and beta2-adrenergic receptor (AR) profiles displayed bi-directional responses to increasing NE doses; female astrocytes exhibited diminished beta1-AR content at low dose exposure, but enhanced beta2-AR expression at high NE dosages. Thus, graded variations in noradrenergic stimulation may modulate astrocyte receptivity to NE in vivo. Sex dimorphic NE regulation of hypothalamic astrocyte AMPK activation and glycogen metabolism may be mediated, in part, by one or more ARs characterized here by divergent sensitivity to this transmitter.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
(−)-Norepinephrine, ≥98%, crystalline
SAFC
Hanks′ Balanced Salts, Modified, without calcium chloride, magnesium sulfate and sodium bicarbonate, powder, suitable for cell culture