Przejdź do zawartości
Merck

Mapping molecular pathways for embryonic Sertoli cells derivation based on differentiation model of mouse embryonic stem cells.

Stem cell research & therapy (2020-02-28)
Chenze Xu, Yichen Dai, Ali Mohsin, Haifeng Hang, Yingping Zhuang, Meijin Guo
ABSTRAKT

Embryonic Sertoli cells (eSCs) have been known for playing important roles in male reproductive development system. In current studies, eSCs were mainly generated from induced intermediate mesoderm. The deriving mechanism of eSCs has been unclear so far. Therefore, this work was aimed to reveal the molecular pathways during derivation of eSCs. In this scenario, a differentiation model from mouse embryonic stem cells (mESCs) to eSCs was established through spatiotemporal control of 5 key factors, Wilms tumor 1 homolog (Wt1), GATA binding protein 4 (Gata4), nuclear receptor subfamily 5, group A, member 1 (Nr5a1, i.e., Sf1), SRY (sex determining region Y)-box 9 (Sox9), doublesex, and mab-3 related transcription factor 1 (Dmrt1). To investigate the molecular mechanism, these key factors were respectively manipulated through a light-switchable (light-on) system, tetracycline-switchable (Tet-on) system, and CRISPR/Cas9 knock out (KO) system. Via the established approach, some embryonic Sertoli-like cells (eSLCs) were induced from mESCs and formed ring-like or tubular-like structures. The key factors were respectively manipulated and revealed their roles in the derivation of these eSLCs. Based on these results, some molecular pathways were mapped during the development of coelomic epithelial somatic cells to eSCs. This differentiation model provided a high controllability of some key factors and brought a novel insight into the deriving mechanism of Sertoli cells.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Anti-NOL3 antibody produced in rabbit, affinity isolated antibody