Skip to Content
Merck
All Photos(1)

Documents

460397

Sigma-Aldrich

Titanium

foil, thickness 0.127 mm, ≥99.99% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Ti
CAS Number:
Molecular Weight:
47.87
EC Number:
MDL number:
UNSPSC Code:
12141746
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥99.99% trace metals basis

form

foil

autoignition temp.

860 °F

resistivity

42.0 μΩ-cm, 20°C

thickness

0.127 mm

bp

3287 °C (lit.)

mp

1660 °C (lit.)

density

4.5 g/mL at 25 °C (lit.)

SMILES string

[Ti]

InChI

1S/Ti

InChI key

RTAQQCXQSZGOHL-UHFFFAOYSA-N

Related Categories

Quantity

1.5 g = 50 × 50 mm; 6.2 g = 100 × 100 mm

Storage Class Code

11 - Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

A Kurbad et al.
International journal of computerized dentistry, 16(2), 125-141 (2013-08-13)
This article presents two novel options for lithium-disilicate restorations supported by single-tooth implants. By using a Ti-Base connector, hybrid abutments and hybrid abutment crowns can be fabricated for different implant systems. The latter option in particular is an interesting new
J H Kim et al.
Journal of nanoscience and nanotechnology, 13(7), 4601-4607 (2013-08-02)
Nanocytalline TiN films were deposited on non-alkali glass and Al substrates by reactive DC magnetron sputtering (DCMS) with an electromagnetic field system (EMF). The microstructure and corrosion resistance of the TiN-coated Al substrates were estimated by X-ray diffraction (XRD), scanning
Jinho Shin et al.
Journal of nanoscience and nanotechnology, 13(8), 5807-5810 (2013-07-26)
In this study, hydroxyapatite (HA) was coated on anodized titanium (Ti) surfaces through radio frequency magnetron sputtering in order to improve biological response of the titanium surface. All the samples were blasted with resorbable blasting media (RBM). RBM-blasted Ti surface
B Subramanian
Journal of nanoscience and nanotechnology, 13(7), 4565-4572 (2013-08-02)
Titanium nitride (TiN)/niobium nitride (NbN) nanostructured multilayer coatings were prepared by DC reactive magnetron sputtering method using the combination of a titanium and niobium target and an Ar-N2 mixture discharge gas on to 316L stainless steel substrates. The coatings showed
Kwi-Dug Yun et al.
Journal of nanoscience and nanotechnology, 13(6), 3864-3867 (2013-07-19)
This study examined the bone response to titanium dioxide nanotube modified implants. A total of 24 implants were placed in the femur of 4 beagles. Before placement, screw-shaped implants were classified into 3 groups; machined surface (group M), titanium dioxide

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service