Skip to Content
Merck
All Photos(4)

Key Documents

NS220

Sigma-Aldrich

Neurite Outgrowth Assay Kit (3 µm)

The NS220 Neurite Outgrowth Assay Kit (3 µm) is based on the use of Millicell cell culture inserts (chambers) containing a permeable membrane with 3-μm pores at the base.

Synonym(s):

3 µm Assay Kit, Assay Kit for Neurites, Neurite Outgrowth Kit

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352207
eCl@ss:
32161000
NACRES:
NA.32

Quality Level

species reactivity (predicted by homology)

all

manufacturer/tradename

Chemicon®

technique(s)

cell based assay: suitable

detection method

colorimetric

shipped in

wet ice

General description

Application

CHEMICON′s NS220 Neurite Outgrowth Assay Kit (3 µm) utilizes microporous tissue culture insert technology from Millipore and is based on the use of Millicell cell culture inserts (chambers) containing a permeable membrane with 3-μm pores at the base. The Millicell inserts utilized in this kit are appropriate for cells projecting neurites of up to 3 µm diameter, e.g. N1E-115 cells [Abe et al., 2003], Dorsal Root Ganglia and Schwann cells [Windebank et al., 1985]. The inserts are designed to fit into a receiver vessel, which when in use contains differentiation media in contact with the bottom of the insert membrane. The permeable membranes allow for discrimination between neurites and cell bodies, as projecting neurites will pass easily through the pores but cell bodies will not. Therefore, by inducing neurites to traverse these membrane pores, a purified population of neurites is located on the underside of the membrane, distal to the surface on which neural cell bodies are deposited.
The assay is a simple, efficient, and versatile system for the quantitative determination of compounds that influence neurite formation and repulsion. With this system, it is possible to screen numerous biological and pharmacological agents simultaneously, directly evaluate adhesion and guidance receptor functions responsible for neurite extension and repulsion, as well as analyze gene function in transfected cells. The microporous filter allows for biochemical separation and purification of neurites and cell bodies for detailed molecular analysis of protein expression, signal transduction processes and identification of drug targets that regulate neurite outgrowth or retraction processes. Reagents and materials supplied in the NS220 Neurite Outgrowth Assay Kit are sufficient for 12 tests.
Note: the 3 µm pore size inserts in this kit are unsuitable for use with PC12 cells. Due to the relatively small diameter of PC12 cell bodies [Abe et al., 2003], some of these cells may pass though 3 µm pores and obscure the results. Chemicon′s NS225 Neurite Outgrowth Assay Kit (1 µm) has been specifically designed for and validated with PC12 cells.

Application

The NS220 Neurite Outgrowth Assay Kit (3 µm) is based on the use of Millicell cell culture inserts (chambers) containing a permeable membrane with 3-μm pores at the base.

Components

1. Neurite Outgrowth Plate Assembly, 3 μm: (Part No. 2007256) 1 x 24-well plate containing 12 x Millicell hanging inserts with 3 μm pore size membranes.

2. Neurite Stain Solution: (Part No. 90242) One 20 mL bottle.

3. Neurite Stain Extraction Buffer: (Part No. 90243) One 20 mL bottle.

4. Neurite Outgrowth Assay Plate: (Part No. 2007255) Two 24-well plates.

5. Cotton Swabs: (Part No. 10202) 50 swabs.

6. Forceps: (Part No. 10203) One each.

Storage and Stability

When stored at 2-8° C, the kit components are stable up to the expiration date. Do not freeze or expose to elevated temperatures. Discard any remaining reagents after the expiration date.

Legal Information

CHEMICON is a registered trademark of Merck KGaA, Darmstadt, Germany

Disclaimer

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

Pictograms

FlameExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Flam. Liq. 2

Storage Class Code

3 - Flammable liquids


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A J Windebank et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 5(6), 1563-1569 (1985-06-01)
In order to understand the relationship of supporting cells to the differentiation of neurons in culture, we have used morphometry to study myelination of dorsal root ganglion (DRG) neurons by central or peripheral supporting cells. Dissociated DRG cultures from 15-day
Chia-Wei Phan et al.
PloS one, 10(11), e0143004-e0143004 (2015-11-14)
Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The
Mark A Ozog et al.
The Journal of biological chemistry, 283(10), 6546-6560 (2007-12-19)
Attempts to promote neuronal survival and repair with ciliary neurotrophic factor (CNTF) have met with limited success. The variability of results obtained with CNTF may, in part, reflect the fact that some of the biological actions of the cytokine are
Michael M Poon et al.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 26(51), 13390-13399 (2006-12-22)
The regulated translation of localized mRNAs in neurons provides a mechanism for spatially restricting gene expression in a synapse-specific manner. To identify the population of mRNAs present in distal neuronal processes of rodent hippocampal neurons, we grew neurons on polycarbonate
M T Filbin
Current biology : CB, 10(3), R100-R103 (2000-02-19)
Myelin is a potent inhibitor of axon regeneration, but has been viewed as just one of many factors that prevent regeneration after injury. So it comes as a surprise that immunization against myelin has been found to allow extensive axon

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service