Transition-metal complexes of the types [Re(CO)(3)Cl(NN)], [Re(CO)(3)py(NN)](+), and [Cu(PPh(3))(2)(NN)](+), where NN = 4,4'-bis(5-phenyl-1,3,4-oxadiazol-2-yl)-2,2'-bipyridine (OX) and 4,4'-bis(N,N-diphenyl-4-[ethen-1-yl]-aniline)-2,2'-bipyridine (DPA), have been synthesized and characterized. Crystal structures for [Re(CO)(3)Cl(DPA)] and [Cu(PPh(3))(2)(OX)]BF(4) are presented. The crystal structure of the rhenium complex shows a trans
Chemistry (Weinheim an der Bergstrasse, Germany), 19(39), 13224-13234 (2013-08-16)
Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the
Chemistry (Weinheim an der Bergstrasse, Germany), 19(13), 4278-4286 (2013-02-02)
The development of rhenium(I) chemistry has been restricted by the limited structural and electronic variability of the common pseudo-octahedral products fac-[ReX(CO)3L2] (L2 = α-diimine). We address this constraint by first preparing the bidentate bis(imino)pyridine complexes [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)3X] (X = Cl 2
Proceedings of the National Academy of Sciences of the United States of America, 110(21), 8668-8673 (2013-04-24)
No significant improvement in therapy of pancreatic cancer has been reported over the last 25 y, underscoring the urgent need for new alternative therapies. Here, we coupled a radioisotope, (188)Rhenium, to an attenuated (at) live Listeria monocytogenes (Listeria(at)) using Listeria-binding
We demonstrate that a tertiary sulfonamide group, N(SO2R)R'2, can rehybridize to form a M-N bond of normal length even when the group is in a linear tridentate ligand, such as in the new tridentate N(SO2R)dpa ligands derived from di-(2-picolyl)amine (N(H)dpa).
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.