Picloram has been used as a supplement in the growth media for culturing embryos.[1]
Biochem/physiol Actions
Picloram (4-Amino-3,5,6-trichloropyridine-2-carboxylic acid) is a chlorinated systemic herbicide widely used for woody plant and broad-leaved weed control. Picloram induces direct somatic embryogenesis of Lilium longiflorum var. Ceb-dazzel.
Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is
Journal of hazardous materials, 153(1-2), 718-727 (2007-10-16)
The degradation of the picloram, a widely used herbicide, has been undertaken by the electrochemical advanced oxidation process, namely electro-Fenton in aqueous solution. This process generates catalytically hydroxyl radicals that are strong oxidizing reagents for the oxidation of organic substances.
Picloram, a widely used chlorinated herbicide, is quite persistent and mobile in soil and water with adverse health and environmental effects. It is essential to establish a rapid and sensitive method for accurate detection of trace picloram in agricultural samples.
Picloram, a herbicide widely used for broadleaf weed control, is persistent and mobile in soil and water with adverse health and environmental effects. It is important to develop a sensitive method for accurate detection of trace picloram in the environment.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.