跳转至内容
Merck

PZ0176

Sigma-Aldrich

SC-26196

≥98% (HPLC)

别名:

SC-26196, a,a-diphenyl-4-[(3-pyridinylmethylene)amino]-1-piperazinepentanenitrile; 2,2-diphenyl-5-(4-[[(1 E)-pyridin-3-yl-methylidene]amino]piperazin-1-yl)pentanenitrile

登录查看公司和协议定价


About This Item

经验公式(希尔记法):
C27H29N5
分子量:
423.55
MDL號碼:
分類程式碼代碼:
41121801
PubChem物質ID:
NACRES:
NA.77

品質等級

化驗

≥98% (HPLC)

形狀

powder

顏色

white to tan

溶解度

DMSO: ≥10 mg/mL

儲存溫度

2-8°C

SMILES 字串

N#CC(CCCN1CCN(CC1)\N=C\c2cccnc2)(c3ccccc3)c4ccccc4

InChI

1S/C27H29N5/c28-23-27(25-10-3-1-4-11-25,26-12-5-2-6-13-26)14-8-16-31-17-19-32(20-18-31)30-22-24-9-7-15-29-21-24/h1-7,9-13,15,21-22H,8,14,16-20H2/b30-22+

InChI 密鑰

QFYKXKMYVYOUNJ-JBASAIQMSA-N

應用

SC-26196 has been used as an inhibitor of delta6 (Δ6) fatty acid desaturase:
  • in mouse inner medullary collecting duct (IMCD3) and human (female) embryonic kidney (HEK) 293 cell culture as Dulbecco′s modified eagle′s medium (DMEM) component
  • in hepatic HepG2 cells
  • in glioblastoma cell lines to test its effect post-radiation treatments

生化/生理作用

SC-26196 is a Delta6 fatty acid desaturase (Delta6D) inhibitor. It specifically inhibited Delta6D activity with an IC(50) value of 100 nM. The rate-limiting step in arachidonic acid synthesis is the desaturation of dietary linoleic acid by Delta6D. SC-26196 completely prevented this conversion of linoleic acid to arachidonic acid.

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Jie Wang et al.
Cancer management and research, 10, 6779-6790 (2018-12-26)
It has been reported that cell inflammation pathways contribute to the development of prostaglandin E2 (PGE2)-inhibitor of DNA-binding protein-1 (ID1)-dependent radio-resistance in glioblastoma. Here, we proposed that inhibiting delta-6-desaturase (D6D) could block arachidonic acid synthesis and PGE2 production, thereby reversing
Wondong Kim et al.
Cell metabolism, 29(4), 856-870 (2019-01-29)
The reactions catalyzed by the delta-5 and delta-6 desaturases (D5D/D6D), key enzymes responsible for highly unsaturated fatty acid (HUFA) synthesis, regenerate NAD+ from NADH. Here, we show that D5D/D6D provide a mechanism for glycolytic NAD+ recycling that permits ongoing glycolysis
Wan-Hsin Chang et al.
Lipids in health and disease, 17(1), 201-201 (2018-08-30)
The macrophage plays an important role in innate immunity to induce immune responses. Lipid replacement therapy has been shown to change the lipid compositions of mitochondria and potentially becomes an alternative to reduce the inflammatory response. We examined the effects
Aiguo Wu et al.
Biochimica et biophysica acta, 1852(5), 951-961 (2015-01-01)
Dietary deficiency of docosahexaenoic acid (C22:6 n-3; DHA) is linked to the neuropathology of several cognitive disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained through the diet or synthesized from dietary precursors, however
Jiajun Du et al.
Nature communications, 11(1), 4830-4830 (2020-09-26)
Non-invasively probing metabolites within single live cells is highly desired but challenging. Here we utilize Raman spectro-microscopy for spatial mapping of metabolites within single cells, with the specific goal of identifying druggable metabolic susceptibilities from a series of patient-derived melanoma

商品

Discover Bioactive Small Molecules for Lipid Signaling Research

Discover Bioactive Small Molecules for Lipid Signaling Research

Discover Bioactive Small Molecules for Lipid Signaling Research

Discover Bioactive Small Molecules for Lipid Signaling Research

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门