跳转至内容
Merck

30674

Sigma-Aldrich

Atto 700

BioReagent, suitable for fluorescence, ≥90.0% (HPCE)

登录查看公司和协议定价


About This Item

MDL號碼:
分類程式碼代碼:
41116100
NACRES:
NA.32

產品線

BioReagent

品質等級

化驗

≥90.0% (HPCE)

製造商/商標名

ATTO-TEC GmbH

透射率

254 nm
700 nm

螢光

λex 681 nm; λem 714 nm in 0.1 M phosphate pH 7.0

&lambda ;

in ethanol (with 0.1% trifluoroacetic acid: 692 nm ± 3 nm)

適合性

suitable for fluorescence

儲存溫度

−20°C

一般說明

Atto 700 is a new label with high molecular absorption (1.2 x 105) and quantum yield (0.25) as well as sufficient Stoke′s shift between excitation and emission maximum. Atto 700 is characterized by high photostability and thermal stability. It is also excellently soluble in water. Due to an insignificant triplet formation rate, it is well suited for single molecule detection applications.

應用

Atto 700 belongs to a new generation of fluorescent labels. The dye is designed for application in the area of life science, e.g. labeling of DNA, RNA or proteins. Characteristic features of the label are strong absorption, high fluorescence quantum yield, excellent thermal and photo-stability, very good water solubility and very little triplet formation. Atto 700 is a zwitterionic dye with a net electrical charge of zero. The fluorescence is efficiently quenched by electron donors like guanine, tryptophan, etc.
Atto labels have rigid structures that do not show any cis-trans-isomerization. Thus these labels display exceptional intensity with minimal spectral shift on conjugation.

法律資訊

This product is for Research use only. In case of intended commercialization, please contact the IP-holder (ATTO-TEC GmbH, Germany) for licensing.

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable

個人防護裝備

Eyeshields, Gloves, type N95 (US)


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Multicolour single molecule imaging in cells with near infra-red dyes.
Tynan, C.J., et al.
PLoS ONE, 4, e36265-e36265 (2012)
Daniel Riester et al.
Bioorganic & medicinal chemistry letters, 19(13), 3651-3656 (2009-05-22)
Histone deacetylases reside among the most important and novel target classes in oncology. Selective lead structures are intensively developed to improve efficacy and reduce adverse effects. The common assays used so far to identify new lead structures suffer from many
Judith E Berlier et al.
The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 51(12), 1699-1712 (2003-11-19)
Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were
Jan Vogelsang et al.
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 8(4), 486-496 (2009-04-02)
The role and interplay of triplet states and radical ion states in single-molecule fluorescence spectroscopy has recently been elaborated providing us with new insights into the photophysics and photobleaching pathways of fluorescent dyes. Adjustment of fluorophore redox properties in combination
Patricia Haus et al.
Journal of biomolecular screening, 16(10), 1206-1216 (2011-10-27)
Histone deacetylases (HDACs) are important epigenetic factors regulating a variety of vital cellular functions such as cell cycle progression, differentiation, cell migration, and apoptosis. Consequently, HDACs have emerged as promising targets for cancer therapy. The drugability of HDACs has been

商品

Fluorescence lifetime measurement is advantageous over intensity-based measurements. Applications include fluorescence lifetime assays, sensing and FLI.

荧光寿命测量与基于强度的测量相比是有优势的。其应用包括荧光寿命分析,感测和FLI。

Fluorescence lifetime measurement is advantageous over intensity-based measurements. Applications include fluorescence lifetime assays, sensing and FLI.

Fluorescence lifetime measurement is advantageous over intensity-based measurements. Applications include fluorescence lifetime assays, sensing and FLI.

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门