Photocatalytic reduction of CO2 into value-added chemical fuels is an appealing approach to address energy crisis and global warming. CsPbBr3 quantum dots (QDs) are good candidates for CO2 reduction because of their excellent photoelectric properties, including high molar extinction coefficient
Journal of materials chemistry. C, 6(37), 10101-10105 (2018-12-07)
Lead halide perovskite nanocrystals (NCs) exhibit excellent tunable emissions covering the entire visible spectral region, but they do not emit near-infrared (NIR) light. We synthesized rare earth element doped CsPbCl3 NCs for NIR emission. The Yb3+ doped CsPbCl3 NCs emitted
Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming
Semiconductor nanorods (NRs) offer the useful property of linearly polarized light emission. While this would be an attractive functionality for strongly emitting perovskite nanoparticles, to date, there has been limited success in demonstrating a direct chemical synthesis of cesium lead