콘텐츠로 건너뛰기
Merck
모든 사진(2)

문서

G1910

Sigma-Aldrich

Gelzan CM

Gelrite®

동의어(들):

Gellan Gum, Agar substitute gelling agent

로그인조직 및 계약 가격 보기


About This Item

CAS Number:
EC Number:
MDL number:
UNSPSC 코드:
10171502
NACRES:
NA.72

응용 분야

agriculture

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Gelrite, gellan gum, is recommended as a gelling agent for use in place of agar in microbiological assay and tissue culture media. Gellan gum is used in a wide variety of immobilization matrices. It forms a hard gel at low concentrations in the presence of an electrolyte. Gellan is a linear tetrasaccharide composed of D-glucose, L-rhamnose, and D-glucuronic acid in the ratio of 2:1:1, linked by β (1 → 4) glycosidic bond.
Gelrite, gellan gum, is recommended as a gelling agent for use in place of agar in microbiological assay and tissue culture media. Gellan gum is used in a wide variety of immobilization matrices. It forms a hard gel at low concentrations in the presence of an electrolyte. Gellan is a linear tetrasaccharide composed of D-glucose, L-rhamnose, and D-glucuronic acid in the ratio of 2:1:1, linked by β (1 → 4) glycosidic bond.

애플리케이션

Gelrite, gellan gum, is recommended as a gelling agent for use in place of agar in microbiological media. Gellan gum is used in a wide variety of immobilization matricies.
Gelzan CM has been used:
  • in the synthesis of gellan-pullulan nanogel via chemical crosslinking
  • in the synthesis of gellan-pullulan hydrogel
  • with KNOP medium to maintain and prepare Anthoceros agrestis thallus tissue sample for imaging

Gelzan CM has been used:
  • in the synthesis of gellan-pullulan nanogel via chemical crosslinking
  • in the synthesis of gellan-pullulan hydrogel
  • with KNOP medium to maintain and prepare Anthoceros agrestis thallus tissue sample for imaging

특징 및 장점

  • Transparent and colorless agar alternative
  • Mechanically robust
  • Disperses in water with ease
  • Low viscosity
  • The resulting gel has a high melting temperature

법적 정보

Gelrite is a registered trademark of CP Kelco U.S., Inc.
Gelzan is a trademark of CP Kelco U.S., Inc.

Storage Class Code

11 - Combustible Solids

WGK

WGK 2

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

Eyeshields, Gloves, type N95 (US)


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Timothy E L Douglas et al.
Biomedical materials (Bristol, England), 12(2), 025015-025015 (2017-02-23)
Injectable composites for tissue regeneration can be developed by dispersion of inorganic microparticles and cells in a hydrogel phase. In this study, multifunctional carbonate microparticles containing different amounts of calcium, magnesium and zinc were mixed with solutions of gellan gum
Timothy E L Douglas et al.
Journal of biomedical materials research. Part A, 106(3), 822-828 (2017-10-24)
Mineralized hydrogels are increasingly gaining attention as biomaterials for bone regeneration. The most common mineralization strategy has been addition of preformed inorganic particles during hydrogel formation. This maintains injectability. One common form of bone cement is formed by mixing particles
Marco A Lopez-Heredia et al.
Journal of tissue engineering and regenerative medicine, 12(8), 1825-1834 (2018-04-28)
Mineralization of hydrogels is desirable prior to applications in bone regeneration. CaCO3 is a widely used bone regeneration material, and Mg, when used as a component of calcium phosphate biomaterials, has promoted bone-forming cell adhesion and proliferation and bone regeneration.
J T Oliveira et al.
Journal of tissue engineering and regenerative medicine, 3(7), 493-500 (2009-07-15)
Gellan gum is a polysaccharide that has been recently proposed by our group for cartilage tissue-engineering applications. It is commonly used in the food and pharmaceutical industry and has the ability to form stable gels without the use of harsh
Zhuoran Jiang et al.
ACS applied materials & interfaces, 11(31), 28289-28295 (2019-07-11)
Poly(tetrafluoroethylene) (PTFE) is a unique polymer with highly desirable properties such as resistance to chemical degradation, biocompatibility, hydrophobicity, antistiction, and low friction coefficient. However, due to its high melt viscosity, it is not possible to three-dimensional (3D)-print PTFE structures using

프로토콜

Reference guide and preparation guide for antibiotic and antimycotic use in plant tissue culture.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.