Tetrabutylammonium cyanide can be used as a catalyst:
For the deprotection of aliphatic thioacetate to synthesize free thiols in the presence of a protic solvent[1].
In the O-TMS cyanosilylation of carbonyl compounds to synthesize cyanohydrin trimethylsilyl ethers in the presence of trimethylsilyl cyanide (TMSCN)[2].
For the ring expansion of β-lactams to synthesize γ-lactams through a bond cleavage of the β-lactam in the presence of acetonitrile[3].
Tetrabutylammonium cyanide (20 mol %) catalyzes ring expansion of 4-(arylimino)methylazetidin-2-ones 2 to 5-aryliminopyrrolidin-2-ones 3 through a novel N1-C4 bond cleavage of the beta-lactam nucleus. New, efficient one-pot protocols to enantiopure succinimide derivatives 3 and 4 from beta-lactam aldehydes 1 have
Aliphatic thioacetate deprotection using catalytic tetrabutylammonium cyanide
Understanding how ion channels open and close their pores is crucial for comprehending their physiological roles. We used intracellular quaternary ammonium blockers, electrophysiology and X-ray crystallography to locate the voltage-dependent gate in MthK potassium channels from Methanobacterium thermoautotrophicum. Blockers bind
Chemistry, an Asian journal, 7(10), 2373-2380 (2012-07-26)
A new series of tris(2-aminoethyl)amine (tren)-based L-alanine amino acid backboned tripodal hexaamide receptors (L1-L5) with various attached moieties based on electron-withdrawing fluoro groups and lipophilicity have been synthesized and characterized. Detailed binding studies of L1-L5 with different anions, such as