KDU691 is an orally active imidazopyrazine class antiparasitic that inhibits Plasmodium & Cryptosporidium phosphatidylinositol-4-OH kinase, PI(4)K, in an ATP-competitive, highly potent and selective manner (IC50/[ATP] = 1.5 nM/10 μM/P. vivax & 17 nM/3 μM/C. parvum PI(4)K) with little or no activity against human PI3Kα/β/γ/δ, PI4KIIIβ, VPS34, and 36 human protein kinases. KDU691 is effective against human pathogens P. falciparum, P. vivax, C. parvum and C. hominis, as well as simian parasite P. cynomolgi. KDU691 blocks Plasmodium development in all life-cycle stages and displays in vivo efficacy in murine models of malaria and cryptosporidiosis.
A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages
To develop new drugs and vaccines for malaria elimination, it will be necessary to discover biological interventions, including small molecules that act against Plasmodium vivax exoerythrocytic forms. However, a robust in vitro culture system for P. vivax is still lacking. Thus
MMV007564 is a novel antimalarial benzimidazolyl piperidine chemotype identified in cellular screens. To identify the genetic determinant of MMV007564 resistance, parasites were cultured in the presence of the compound to generate resistant lines. Whole genome sequencing revealed distinct mutations in
Malaria control and elimination are threatened by the emergence and spread of resistance to artemisinin-based combination therapies (ACTs). Experimental evidence suggests that when an artemisinin (ART)-sensitive (K13 wild-type) Plasmodium falciparum strain is exposed to ART derivatives such as dihydroartemisinin (DHA)
Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.